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all.equal.key An all.equal method for variable wide keys

Description

Disregards attributes by defaults. Before comparing the two keys, the values are sorted by "name_new").

Usage

## S3 method for class 'key'
all.equal(target, current, ..., check.attributes = FALSE)

Arguments

target A wide variable key

current A wide variable key

... Other arguments that are ignored
check.attributes

Default FALSE

Author(s)

Paul E. Johnson <pauljohn@ku.edu>
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all.equal.keylong An all.equal method for variable long keys

Description

Disregards attributes by defaults. Before comparing the two keys, the values are sorted by "name_new").

Usage

## S3 method for class 'keylong'
all.equal(target, current, ..., check.attributes = FALSE)

Arguments

target A long variable key

current A long variable key

... Other arguments that are ignored
check.attributes

Default FALSE

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

alphaOnly Keep only alpha-numeric symbols

Description

From a text string, keep ASCII letters, numbers, as well as "’", " ", "_" "(", ")", "-", and "+". For
maximum compatability with the cross-platform file-naming standard. Obliterates all characters
that migth be mistaken for shell symbols, like "^", "$", "@" and so forth.

Usage

alphaOnly(x, also)

Arguments

x text string, or vector of strings (each of which is processed separately)

also A named vector of other symbols that the user wants to remove, along with
replacements. For example, c(" " = "_", "-" = "", "+" = "") to replace space with
underscore and minus and plus signs with nothing.
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Details

Removes trailing spaces.

This version allows internal spaces in the string, by default. The also argument can be used to
eliminate spaces or other hated symbols.

Value

cleaned text string

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

x <- c("[]kansas(city) Missouri", "percent%slash/",
"\back{squiggle}_under(paren)", "*star-minus+plus")

alphaOnly(x)
alphaOnly(x, also = c(" " = "_", "+" = "_"))
alphaOnly(x, also = c("(" = "[", ")" = "]"))

anonomize Create unique anonymous id values

Description

Obscure participant id values by replacing them with "anon-1" and so forth.

Usage

anonomize(x, prefix = "anon")

Arguments

x A column of "confidential" names, possibly with repeats

prefix Character string to use as prefix in result. Default is "anon"

Details

Caution: the true "confidential" names are used as names in the output vector

Value

Named character vector of anonymized id names.

Author(s)

Paul Johnson <pauljohn@ku.edu> x <- c("bill", "bob", "fred", "bill") (anonomize(x, prefix = "id"))
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assignMissing Set missing values

Description

The missings values have to be carefully written, depending on the type of variable that is being
processed.

Usage

assignMissing(x, missings = NULL, sep = ";")

Arguments

x A variable

missings A string vector of semi-colon separated values, ranges, and/or inequalities. For
strings and factors, only an enumeration of values (or factor levels) to be ex-
cluded is allowed. For numeric variables (integers or floating point variables),
one can specify open and double-sided intervals as well as particular values
to be marked as missing. One can append particular values and ranges by
"1;2;3;(8,10);[22,24];> 99;< 2". The double-sided interval is represented in the
usual mathematical way, where hard bracketes indicate "closed" intervals and
parentheses indicate open intervals.

1. "(a,b)" means values of x greater than a and smaller than b will be set as
missing.

2. "[a,b]" is a closed interval, one which includes the endpoints, so a <= x <=
b will be set as NA

3. "(a,b]" and "[a,b)" are acceptable.
4. "< a" indicates all values smaller than a will be missing
5. "<= a" means values smaller than or equal to a will be excluded
6. "> a" and ">= a" have comparable interpretations.
7. "8;9;10" Mark off specific values by an enumeration. Be aware, however,

that this is useful only for integer variables. As demonstrated in the exam-
ple, for floating point numbers, one must specify intervals.

8. For factors and character variables, the argument missings can be written
either as "lo;med;hi" or "c(’lo’,’med’,’hi’)"

sep A separator symbol, ";" (semicolon) by default

Details

Version 0.95 of kutils introduced a new style for specification of missing values.

Value

A cleaned column in which R’s NA symbol replaces values that should be missing
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Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

## 1. Integers.
x <- seq.int(-2L, 22L, by = 2L)
## Exclude scores 8, 10, 18
assignMissing(x, "8;10;18")
## Specify range, 4 to 12 inclusive
missings <- "[4,12]"
assignMissing(x, missings)
## Not inclusive
assignMissing(x, "(4,12)")
## Set missing for any value smaller that 7
assignMissing(x, "< 7")
assignMissing(x, "<= 8")
assignMissing(x, "> 11")
assignMissing(x, "< -1;2;4;(7, 9);> 20")

## 2. strings
x <- c("low", "low", "med", "high")
missings <- "low;high"
assignMissing(x, missings)
missings <- "med;doesnot exist"
assignMissing(x, missings)
## Test alternate separator
assignMissing(x, "low|med", sep = "|")

## 3. factors (same as strings, really)
x <- factor(c("low", "low", "med", "high"), levels = c("low", "med", "high"))
missings <- "low;high"
assignMissing(x, missings)
## Previous same as
missings <- c("low", "high")
assignMissing(x, missings)

missings <- c("med", "doesnot exist")
assignMissing(x, missings)
## ordered factor:
x <- ordered(c("low", "low", "med", "high"), levels = c("low", "med", "high"))
missings <- c("low", "high")
assignMissing(x, missings)

## 4. Real-valued variable
set.seed(234234)
x <- rnorm(10)
x
missings <- "< 0"
assignMissing(x, missings)
missings <- "> -0.2"
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assignMissing(x, missings)
## values above 0.1 and below 0.7 are missing
missings <- "(0.1,0.7)"
assignMissing(x, missings)
## Note that in floating point numbers, it is probably
## futile to specify specific values for missings. Even if we
## type out values to 7 decimals, nothing gets excluded
assignMissing(x, "-0.4879708;0.1435791")
## Can mark a range, however
assignMissing(x, "(-0.487971,-0.487970);(0.14357, 0.14358)")
x

assignRecode A variable is transformed in an indicated way

Description

In the variable key framework, the user might request transformations such as the logarithm, expo-
nential, or square root. This is done by including strings in the recodes column, such as "log(x + 1)"
or "3 + 1.1 * x + 0.5 * x ^ 2". This function implements the user’s request by parsing the character
string and applying the indicated re-calculation.

Usage

assignRecode(x, recode = NULL)

Arguments

x A column to be recoded

recode A character string using placeholder "x". See examples

Details

In the variable key framework, this is applied to the raw data, after missings are imposed.

Value

A new column

Author(s)

Paul Johnson <pauljohn@ku.edu>
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Examples

set.seed(234234)
x <- rpois(100, lambda = 3)
x <- x[order(x)]
str1 <- "log(x + 1)"
xlog <- assignRecode(x, recode = str1)
plot(xlog ~ x, type = "l")
mean(xlog, na.rm = TRUE)
str2 <- "x^2"
xsq <- assignRecode(x, recode = str2)
plot(xsq ~ x, type = "l")
str3 <- "sqrt(x)"
xsrt <- assignRecode(x, recode = str3)

checkCoercion Check if values can be safely coerced without introduction of missing
values

Description

This might be named "coercesSafely" or such. If values cannot be coerced into class specified, then
values must be incorrect.

Usage

checkCoercion(value, targetclass, na.strings = c("\\.", "", "\\s+", "N/A"))

Arguments

value Character vector of values, such as value_new or value_old for one variable in a
key.

targetclass R class name

na.strings Values that should be interpreted as R NA. These are ignored in the coercion
check.

Value

either TRUE, or a vector of values which are not successfully coerced

Author(s)

Paul Johnson <pauljohn@ku.edu>
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Examples

x1 <- c("TRUE", "FALSE", FALSE, TRUE, NA, ".", "N/A", " ", "")
checkCoercion(x1, "logical")
x1 <- c(x1, "TRUE.FALSE", "Has a space")
## Should fail:
checkCoercion(x1, "logical")
x2 <- c(4, 5, 6, 9.2, ".", " ")
## Should fail
checkCoercion(x2, "logical")
x3 <- factor(c("bob", "emily", "bob", "jane", "N/A", " ", NA, "NA"))
checkCoercion(x3, "ordered")
checkCoercion(x3, "integer")
## Should fail:
checkCoercion(x3, "logical")

colnamesReplace Replace column names with new names from a named vector

Description

A convenience function to alter column names. Can be called from code cleanup in the variable key
system.

Usage

colnamesReplace(
dat,
newnames,
oldnames = NULL,
...,
lowercase = FALSE,
verbose = FALSE

)

Arguments

dat a data frame

newnames Can be a named vector of the form c(oldname1 = "newname1", oldname2 =
"newname") or it may be simply c("newname1", "newname2") to correspond
with the oldname vector.

oldnames Optional. If supplied, must be same length as newnames.

... Additional arguments that will be passed to R’s gsub function, which is used
term-by-term inside this function.

lowercase Default FALSE. Should all column names be converted to lower case.

verbose Default FALSE. Want diagnostic output about column name changes?
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Value

a data frame

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

set.seed(234234)
N <- 200
mydf <- data.frame(x5 = rnorm(N), x4 = rnorm(N), x3 = rnorm(N),

x2 = letters[sample(1:24, 200, replace = TRUE)],
x1 = factor(sample(c("cindy", "bobby", "marsha",

"greg", "chris"), 200, replace = TRUE)),
x11 = 7,
x12 = 18,
x13 = 33,
stringsAsFactors = FALSE)

mydf2 <- colnamesReplace(mydf, newnames = c("x4" = "GLOPPY"))
mydf2 <- colnamesReplace(mydf, newnames = c("x4" = "GLOPPY", "USA" = "Interesting"), verbose = TRUE)
colnames(mydf2)
head(mydf3 <- colnamesReplace(mydf, newnames = c(x11 = "x12", x12 = "x13", x13 = "x20")))
head(mydf4 <- colnamesReplace(mydf, newnames = c(x12 = "x11", x11 = "x99", x13 = "x20")))

deduper Removes redundant words from beginnings of character strings

Description

In Qualtrix data, we sometimes find repeated words in column names. For whatever reason, the
variable names have repeated words like "Philadelphia_Philadelphia_3". This function changes a
vector c("Philadelphia_Philadelphia_3", "Denver_Denver_4") to c("Philadelphia_3", "Denver_4").
It is non destructive, so that other values will not be altered.

Usage

deduper(x, sep = ",_\\s-", n = NULL)

Arguments

x Character vector

sep Delimiter. A regular expression indicating the point at which to split the strings
before checking for duplicates. Default will look for repeat separated by comma,
underscore, or one space character.

n Limit on number of duplicates to remove. Default, NULL, means delete all
duplicates at the beginning of a string.
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Details

See https://stackoverflow.com/questions/43711240/r-regular-expression-match-omit-several-repeats

Value

Cleaned up vector.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

x <- c("Philadelphia_Philadelphia_3", "Denver_Denver_4",
"Den_Den_Den_Den_Den_Den_Den_5")

deduper(x)
deduper(x, n = 2)
deduper(x, n = 3)
deduper(x, n = 4)
x <- c("Philadelphia,Philadelphia_3", "Denver Denver_4")
## Shows comma also detected by default
deduper(x)
## Works even if delimiter is inside matched string,
## or separators vary
x <- c("Den_5_Den_5_Den_5,Den_5 Den_5")

deduper(x)
## generate vector
x <- replicate(10, paste(sample(letters, 5), collapse = ""))
n <- c(paste0("_", sample(1:10, 5)), rep("", 5))
x <- paste0(x, "_", x, n, n)
x
deduper(x)

deleteBogusColumns Remove columns in which the proportion of missing data exceeds a
threshold.

Description

This is a column version of deleteBogusRows. Use the pm argument to set the proportion of
missing required before a column is flagged for deletion

Usage

deleteBogusColumns(dframe, pm = 0.9, drop = FALSE, verbose = TRUE, n = 25)

https://stackoverflow.com/questions/43711240/r-regular-expression-match-omit-several-repeats
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Arguments

dframe A data frame or matrix

pm "proportion missing data" to be tolerated.

drop Default FALSE: if data frame result is reduced to one column, should R’s default
drop behavior "demote" this to a column vector.

verbose Default TRUE. Should a report be printed summarizing information to be delted?

n Default 25: limit on number of values to print in diagnostic output. If set to
NULL or NA, then all of the column values will be printed for the bogus rows.

Value

a data frame, invisibly

Author(s)

Paul Johnson <pauljohn@ku.edu>

See Also

deleteBogusRows

deleteBogusRows Remove rows in which the proportion of missing data exceeds a thresh-
old.

Description

If cases are mostly missing, delete them. It often happens that when data is imported from other
sources, some noise rows exist at the bottom of the input. Anything that is missing in more than,
say, 90% of cases is probably useless information. We invented this to deal with problem that MS
Excel users often include a marginal note at the bottom of a spread sheet.

Usage

deleteBogusRows(dframe, pm = 0.9, drop = FALSE, verbose = TRUE, n = 25)

Arguments

dframe A data frame or matrix

pm "proportion missing data" to be tolerated.

drop Default FALSE: if data frame result is reduced to one row, should R’s default
drop behavior "demote" this to a column vector.

verbose Default TRUE. Should a report be printed summarizing information to be delted?

n Default 25: limit on number of values to print in verbose diagnostic output. If
set to NULL or NA, then all of the column values will be printed for the bogus
rows.
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Value

a data frame, invisibly

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

mymat <- matrix(rnorm(10*100), nrow = 10, ncol = 100,
dimnames = list(1:10, paste0("x", 1:100)))

mymat <- rbind(mymat, c(32, rep(NA, 99)))
mymat2 <- deleteBogusRows(mymat)
mydf <- as.data.frame(mymat)
mydf$someFactor <- factor(sample(c("A", "B"), size = NROW(mydf), replace = TRUE))
mydf2 <- deleteBogusRows(mydf, n = "all")

dev.create Create a graphics device

Description

This is a way to create a graphic device on screen that can display R plots. It is performing the same
purpose as R’s dev.new, but it overcomes the limitations of RStudio. It is needed because RStudio
does not implement fully the functionality of dev.new. This is suitable for Windows, Linux, and
Macintosh operating systems.

Usage

dev.create(...)

Arguments

... Currently, height and width parameters that would be suitable with dev.new

Details

The argument in dev.new named noRStudioGD seems to be aimed at same purpose. But it does not
do what I want and documentation is too sparse.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

if(interactive()) dev.create(height = 7, width = 3)
dev.off()
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dir.create.unique Create a uniquely named directory. Appends number & optionally
date to directory name.

Description

Checks if the requested directory exists. If so, will create new directory name. My favorite method
is to have the target directory with a date-based subdirectory, but set usedate as FALSE if you don’t
like that. Arguments showWarnings, recursive, and mode are passed along to R’s dir.create, which
does the actual work here.

Usage

dir.create.unique(
path,
usedate = TRUE,
showWarnings = TRUE,
recursive = TRUE,
mode = "0777"

)

Arguments

path A character string for the base name of the directory.

usedate TRUE or FALSE: Insert YYYYMMDD information?

showWarnings default TRUE. Show warnings? Will be passed on to dir.create

recursive default TRUE. Will be passed on to dir.create

mode Default permissions on unix-alike systems. Will be passed on to dir.create

Details

Default response to dir = "../output/" fixes the directory name like this, "../output/20151118-1/"
because usedate is assumed TRUE. If usedate = FALSE, then output names will be like "../output-
1/", "../output-2/", and so forth.

Value

a character string with the directory name

Author(s)

Paul E Johnson <pauljohn@ku.edu>
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dms Delete multiple slashes, replace with one

Description

Sometimes paths end up with "/too//many//slashes". While harmless, this is untidy. Clean it up.

Usage

dms(name)

Arguments

name A character string to clean

Author(s)

Paul Johnson <pauljohn@ku.edu>

dts Delete trailing slash

Description

This function cleans up a path string by removing the trailing slash. This is necessary on MS
Windows, file.exists(fn) fails if "/" is on end of file name. Deleting the trailing slash is thus
required on Windows and it is not harmful on other platforms.

Usage

dts(name)

Arguments

name A path

Details

All usages of file.exists(fn) in R should be revised to be multi-platform safe by writing file.exists(dts(fn)).

This version also removes repeated adjacent slashes, so that "/tmp///paul//test/" becomes
"/tmp/paul/test".

Value

Same path with trailing "/" removed.
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Author(s)

Paul Johnson <pauljohn@ku.edu>

escape Text that is to be included as content in documents is cleaned (escaped)
to prevent errors

Description

This is for fixing up "untrusted text" that is to be passed into a file as content. It protects against
"bad" text strings in 3 contexts, 1) LaTeX documents, 2) HTML documents, or 3) text in a file name.
It converts content text to an improved string that will not cause failures in the eventual document.

Usage

escape(x, type = "tex")

Arguments

x a string, or vector of strings (each of which is processed separately)
type "tex" is default, could be "filename" or "html"

Details

The special in-document LaTeX symbols like percent sign or dollar sign are " session, these will
appear as double-backslashed symbols, while in a saved text file, there will only be the one desired
slash.

If type = "html", we only clean up <, >, / and &, and quote characters. If document is in unicode,
we don’t need to do the gigantic set anymore.

If type = "filename", then symbols that are not allowed in file names, such as "\", "*", are replaced.
Do not use this on a full path, since it will obliterate path separators.

Value

corrected character vector

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

x1 <- c("_asdf&_&$", "asd adf asd_", "^ % & $asdf_")
escape(x1)
x2 <- c("a>b", "a<b", "a < c", 'Paul "pj" Johnson')
escape(x2, type = "tex")
escape(x2, type = "html")
escape(x2, type = "filename")
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file.backup Create a backup version of a file by renaming it.

Description

Inserts the date-time of the most recent modification at the end of the file name, before the extension.

Usage

file.backup(name, fullpath = FALSE, keep.old = FALSE, verbose = FALSE)

Arguments

name A character string for the name of the file.

fullpath Return the full directory path to the file. Default FALSE, return only the file
name.

keep.old If FALSE (default), rename the file. Otherwise, keep old copy.

verbose If TRUE, output warnings and list the files in the output directory when done.

Details

Return is the new file name that was created, using whatever path information was provided in the
file’s original name. However, the fullpath argument can be set to TRUE, so a path with the full
directory name will be created and returned.

Value

The name of the newly created file.

Author(s)

Shadi Pirhosseinloo <shadi@ku.edu> Paul Johnson <pauljohn@ku.edu>

Examples

tdir <- tempdir()
owd <- getwd()

setwd(tdir)
system("touch test.1.txt")
system("touch test.2.txt")
system("touch test.3.txt")
system("touch test.4.txt")
system("touch test.5.txt")
## note: no extension next
system("touch test.6")
list.files()
file.backup("test.1.txt")
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file.backup("test.2.txt", fullpath=TRUE)
list.files()
setwd(owd)
file.backup(file.path(tdir, "test.3.txt"))
## Next should be same path because input had a full path
file.backup(file.path(tdir, "test.4.txt"), fullpath=TRUE)
file.backup(file.path(tdir, "test.5.txt"), fullpath = TRUE, verbose = TRUE)
file.backup(file.path(tdir, "test.6"))

importQualtrics Import Qualtrics survey files, apply clean column names

Description

Defaults are based on most common format received from Qualtrics downloads to CSV or XLSX
(MS Excel) formats. We assume that the file has the column names in row 1 and that 3 rows are
skipped before the real data begins. If the parameter questrow is used, it designates a row that is
interpreted as the survey questions themselves. Often, this is in row 2.

Usage

importQualtrics(
file,
namerow = 1,
questionrow = 2,
importidrow = 3,
skip = 3,
dropTEXT = TRUE,
stringsAsFactors = FALSE

)

Arguments

file file name (including path if in another directory) of a CSV or XLSX file from
Qualtrics.

namerow Row number for variable names. Default 1, the information to be used as column
names (same as HEADER row in R’s read.table function)

questionrow Row number to be treated as the questions in the survey. Default is 2. If ques-
tions do not seem to be present in this row, there will be a warning.

importidrow Row number to be treated as Qualtrics meta data. Default is 3. Many CSV cre-
ated by Qualtrics will have row 3 with a character string such as "{""ImportId"":""QID1303_4""}".
If importids are not present in this row, there will be a warning.

skip Number of rows that are meta data. Current Qualtrics CSV files will usually
have 3 metadata rows, 1 = name, 2 = question, 3 = ImportId. This function will
try to guess how many rows of metadata are present. skip should be at least as
large as max(namerow, questions, and importids)
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dropTEXT Default TRUE, columns ending in "_TEXT" are omitted.
stringsAsFactors

Default FALSE, same meaning as R’s read.csv. Does not affect importation of
Excel files.

Value

Data frame that has attribute "meta"

Author(s)

Paul Johnson <pauljohn@ku.edu>

initProject Create project directories, initialize a git repo, create README.md
ChangeLog, and R template file in R directory

Description

This creates folders for the separate parts of a project. It tries to be clever about which directories
are created and where they are placed. Please see details for 3 scenarios for which we have planned.
If a directory already exists, it will not be damaged or re-created.

Usage

initProject(
dir = NULL,
ddir = "data",
wdir = "workingdata",
odir = "output",
tdir = "tmp",
ldir = "lit",
writedir = "writeup",
rdir = "R",
...,
gitArgs = "--shared=group"

)

Arguments

dir Default NULL, otherwise a legal directory name to serve as the top level direc-
tory for this project

ddir Data directory, place where "read only" unadjusted data files are kept. Default
is "data". If user sets it as NA or NULL, the directory will not be created.

wdir Working data directory, where recorded, revised, and cleaned data files are kept.
Default is "workingdata".
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odir Output directory. Default is "output".

tdir Temporary directory, where trash files can be kept for safe keeping. Default is
"tmp".

ldir Literature directory, where material about the project can be stored. Default is
"lit".

writedir The folder where the project writeup will be stored. Default is "writeup".

rdir The name to be used for the R files. Defaults to "R".

... A list of other directories that the user would like to create. For example, adir =
"admin", cdir = "client_provided", bdir = "codebooks", sdir = "Stata",
mdir = "Mplus". These may be grouped in a named vector or list, if user conve-
nience dictates.

gitArgs This function tries to run "git init" and in our center we add "–shared=group" on
a network file server. If that is undesirable in a user’s context, put the argument
gitArgs as "".

Details

If the dir argument is NULL, as default, then the current working directory will be the place where
new directories and the git repository will be created. Assuming the current working directory’s
base name is not "R", then folders named "R", "data", and so forth will be created in the current
working directory.

If one has a current R working directory with a basename "R" (suppose it is "/tmp/whatever/R"),
and the user runs initProject(), something different happens. The function assumes we don’t
want to create subdirectories inside R. We don’t want to end up with "/tmp/whatever/R/R". We
don’t want "/tmp/whatever/R/data" either. Instead, it assumes we want the new directories cre-
ated on same level as R, so it creates "/tmp/whatever/data", "/tmp/whatever/workingdata",
and so forth. From within the R directory, these new directories are seen as "../data", "../workingdata",
and so forth. That is, we should end up with directories and a git repo in "/tmp/whatever".

If the dir argument is provided by the user, then that is used as the folder in which directories "R",
"data", "workingdate", and so forth are created. All materials are created in dir, no matter what
the current working directory is named (even if it is "R").

The examples demonstrate all three of these scenarios.

Value

Name of project top level directory. Leaves the R working directory unchanged.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

projdir1 <- file.path(tempdir(), "test1")
dir.create(projdir1, recursive = TRUE)
initProject(dir = projdir1)
list.files(projdir1, all.files = TRUE)
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projdir2 <- file.path(tempdir(), "test2")
dir.create(projdir2, recursive = TRUE)
## demonstrate ability to create other directories
initProject(dir = projdir2, admin = "admin", clientfiles = "client")
list.files(projdir2, all.files = TRUE)
## demonstrate ability to nullify standard directories
projdir3 <- file.path(tempdir(), "test3")
dir.create(projdir3, recursive = TRUE)
initProject(projdir3, odir = NA, tdir = NA, writedir = NA)
list.files(projdir3, all.files = TRUE)
unlink(c("projdir1", "projdir2", "projdir3"), recursive = TRUE)

is.data.frame.simple Check if a data frame is a simple collection of columns (no lists or
matrices within)

Description

Checks for the existence of dimensions within the data frame. Returns FALSE if any object within
dframe has non-null dim value.

Usage

is.data.frame.simple(dframe)

Arguments

dframe A data frame

Details

See: http://stackoverflow.com/questions/38902880/data-frame-in-which-elements-are-not-single-columns

Value

Boolean, TRUE or FALSE. An attribute "not_a_simple_column" is created, indicating which of the
elements in the dframe have dimensions

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

N <- 100
mydf <- data.frame(x5 = rnorm(N),

x4 = rpois(N, lambda = 3),
x3 = ordered(sample(c("lo", "med", "hi"),
size = N, replace=TRUE)))
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is.data.frame.simple(mydf)
mydf$amatr <- matrix(0, ncol = 2, nrow = NROW(mydf))
is.data.frame.simple(mydf)
mydf$amatr <- NULL
is.data.frame.simple(mydf)
mydf$adf <- mydf
is.data.frame.simple(mydf)

isNA Check if values are R NA symbol or any one of the na.strings elements

Description

A value vector in the key will generally be a character vector. This utility is used to check if the
characters are either R missing or values in a list of characters that represent missings.

Usage

isNA(x, na.strings = c("\\.", "", "\\s+", "N/A"))

Arguments

x Input data vector

na.strings Vector of string values to be considered as missing. Defaults will match values
that are equal to ., empty string, any number of white space elements, or charcter
string N/A. We do not include ‘NA‘ by default because some projects use NA to
mean "not appropriate".

Value

Logical vector, TRUE if a value is either NA or in na.strings.

Examples

x1 <- c("TRUE", "FALSE", FALSE, TRUE, NA, "NA", ".", "N/A", " ", "")
x1na <- kutils:::isNA(x1)
cbind(x1, x1na)
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keyApply Apply variable key to data frame (generate recoded data frame)

Description

This is the main objective of the variable key system.

Usage

keyApply(
dframe,
key,
diagnostic = TRUE,
safeNumericToInteger = TRUE,
trimws = "both",
ignoreCase = TRUE,
drop = TRUE,
debug = FALSE

)

Arguments

dframe An R data frame
key A variable key object, of class either "key" or "keylong"
diagnostic Default TRUE: Compare the old and new data frames carefully with the keyDi-

agnostic function.
safeNumericToInteger

Default TRUE: Should we treat values which appear to be integers as integers?
If a column is numeric, it might be safe to treat it as an integer. In many csv data
sets, the values coded c(1, 2, 3) are really integers, not floats c(1.0, 2.0, 3.0). See
safeInteger.

trimws Default is "both", can change to "left", "right", or set as NULL to avoid any
trimming.

ignoreCase Default TRUE. If column name is capitalized differently than name_old in the
key, but the two are otherwise identical, then the difference in capitalization will
be ignored.

drop Default TRUE. True implies drop = c("vars", "vals"). TRUE applies to both
variables ("vars") and values ("vals"). "vars" means that a column will be omit-
ted from data if it is not in the key "name_old". Similarly, if anything except "."
appears in value_old, then setting drop="vals" means omission of a value from
key "value_old" causes observations with those values to become NA. This is
the original variable key behavior. The drop argument allows "partial keys", be-
ginning with kutils version 1.12. drop = FALSE means that neither values nor
variables are omitted. Rather than TRUE, one can specify either drop = "vars",
or drop = "vals".

debug Default FALSE. If TRUE, emit some warnings.
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Value

A new data.frame object, with renamed and recoded variables

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

mydf.key.path <- system.file("extdata", "mydf.key.csv", package = "kutils")
mydf.key <- keyImport(mydf.key.path)
mydf.path <- system.file("extdata", "mydf.csv", package = "kutils")

mydf <- read.csv(mydf.path, stringsAsFactors = FALSE)
mydf2 <- keyApply(mydf, mydf.key)

nls.keylong.path <- system.file("extdata", "natlongsurv.key_long.csv", package = "kutils")
nls.keylong <- keyImport(nls.keylong.path, long = TRUE)
data(natlongsurv)
nls.dat <- keyApply(natlongsurv, nls.keylong)

keyCheck Check a key for consistency of names, values with classes.

Description

Split the key into blocks of rows defined by "name_new". Within these blocks, Perform these
checks: 1. name_old must be homogeneous (identical) within a block of rows. class_old and
class_new must also be identical. 2. elements in "value_new" must be consistent with "class_new".
If values cannot be coerced to match the class specified by class_new, there must be user error.
Same for "value_old" and "class_old".

Usage

keyCheck(
key,
colname = c("name_new", "class_old", "class_new"),
na.strings = c("\\.", "", "\\s+", "N/A")

)

Arguments

key A variable key object.

colname Leave as default to check consistency between classes, values, and names. One
can specify a check only on "class_old" or "class_new", for example. But now
that all work correctly, I suggest you leave the default.
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na.strings A regular expression of allowed text strings that represent missings. Now it
amounts to any of these: ".", "NA", "N/A", or any white space or tab as signified
by \s+.

Value

Profuse warnings and a list of failed key blocks.

Author(s)

Paul Johnson <pauljohn@ku.edu> and Ben Kite <bakite@ku.edu>

keyCrossRef keyCrossRef

Description

Checks a key for dangerous matches of old and new values in a key for different levels.

Usage

keyCrossRef(key, ignoreClass = NULL, verbose = FALSE, lowercase = FALSE)

Arguments

key A variable key, ideally a long key. If a wide key is provided it is converted to
long.

ignoreClass Classes that should be excluded from check. Useful when many integer vari-
ables are being reverse- coded. Takes a string or vector.

verbose Should a statement about the number of issues detected be returned? Defaults
to FALSE.

lowercase Should old and new values be passed through tolower function? Defaults to
FALSE.

Details

Positions in a long key are referred to as levels. If a value is mismatched at levels 1 and 3, this
means that issues are in rows 1 and 3 of the section of the given variable in a long key.

Value

Presents a warning for potentially problematic key sections. Return is dependent on verbose argu-
ment.

Author(s)

Ben Kite <bakite@ku.edu>
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Examples

dat <- data.frame(x1 = sample(c("a", "b", "c", "d"), 100, replace = TRUE),
x2 = sample(c("Apple", "Orange"), 100, replace = TRUE),
x3 = ordered(sample(c("low", "medium", "high"), 100, replace = TRUE),
levels = c("low", "medium", "high")),
stringsAsFactors = FALSE)

key <- keyTemplate(dat, long = TRUE)
## No errors with a fresh key.
kutils:::keyCrossRef(key, verbose = TRUE)
key[1:2, "value_new"] <- c("b", "a")
key[5, "value_new"]
key[7:9, "value_new"] <- c("high", "medium", "low")
kutils:::keyCrossRef(key)
kutils:::keyCrossRef(key, ignoreClass = c("ordered", "character"), verbose = TRUE)

keyDiagnostic Diagnose accuracy of result from applying variable key to data

Description

Compare the old and new data frames, checking for accuracy of calculations in various ways.

Usage

keyDiagnostic(
dfold,
dfnew,
keylist,
max.values = 20,
nametrunc = 18,
wide = 200,
confidential = FALSE

)

Arguments

dfold Original data frame

dfnew The new recoded data frame

keylist The imported variable key that was used to transform dfold into dfnew.

max.values Show up to this number of values for the old variable

nametrunc Truncate column and row names. Needed if there are long factor labels and we
want to fit more information on table. Default = 18 for new name, old name is
10 more characters (18 + 10 = 28).

wide Number of characters per row in printed output. Suggest very wide screen,
default = 200.

confidential Should numbers in table be rounded to nearest "10" to comply with security
standard enforced by some American research departments.
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Details

CAUTION: This can print WIDE matrices. Because the on-screen output will be WIDE, make the
display window WIDE!

Crosstabulate new variable versus old variable to see the coding mismatches. For tables of up to 10
values or so, that will be satisfactory.

For numeric variables, it appears there is no good thing to do except possibly to re-apply any trans-
formations.

Author(s)

Paul Johnson <pauljohn@ku.edu>

keyDiff Show difference between 2 keys

Description

Show difference between 2 keys

Usage

keyDiff(oldkey, newkey)

Arguments

oldkey key, original

newkey key, possibly created by keyUpdate or by user edits

Value

NULL, or list with as many as 2 key difference data.frames, named "deleted" and "neworaltered"

Author(s)

Ben Kite <bakite@ku.edu> and Paul Johnson <pauljohn@ku.edu>

Examples

dat1 <- data.frame("Score" = c(1, 2, 3, 42, 4, 2),
"Gender" = c("M", "M", "M", "F", "F", "F"))

## First try with a long key
key1 <- keyTemplate(dat1, long = TRUE)
key1$value_new <- gsub("42", "10", key1$value_new)
key1$value_new[key1$name_new == "Gender"] <-

mgsub(c("F", "M"), c("female", "male"),
key1$value_new[key1$name_new == "Gender"])

key1[key1$name_old == "Score", "name_new"] <- "NewScore"
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dat2 <- data.frame("Score" = 7, "Gender" = "other", "Weight" = rnorm(3))
dat2 <- plyr::rbind.fill(dat1, dat2)
dat2 <- dat2[-1,]
key2 <- keyUpdate(key1, dat2, append = TRUE)
(kdiff <- keyDiff(key1, key2))

keyImport Import/validate a key object or import/validate a key from a file.

Description

After the researcher has updated the key by filling in new names and values, we import that key file.
This function can import the file by its name, after deducing the file type from the suffix, or it can
receive a key object from memory.

Usage

keyImport(
key,
ignoreCase = TRUE,
sep = c(character = "\\|", logical = "\\|", integer = "\\|", factor = "\\|",
ordered = "[\\|<]", numeric = "\\|"),

na.strings = c("\\.", "", "\\s+", "N/A"),
missSymbol = ".",
...,
keynames = NULL

)

Arguments

key A key object (class key or keylong) or a file name character string (ending in
csv, xlsx or rds).

ignoreCase In the use of this key, should we ignore differences in capitalization of the
"name_old" variable? Sometimes there are inadvertent misspellings due to changes
in capitalization. Columns named "var01" and "Var01" and "VAR01" proba-
bly should receive the same treatment, even if the key has name_old equal to
"Var01".

sep Character separator in value_old and value_new strings in a wide key. De-
fault is are "|". It is also allowed to use "<" for ordered variables. Use regular
expressions in supplying separator values.

na.strings Values that should be converted to missing data. This is relevant in name_new as
well as value_new. In spreadsheet cells, we treat "empty" cells (the string ""),
or values like "." or "N/A", as missing with defaults ".", "", "\s" (white space),
and "N/A". Change that if those are not to be treated as missings.

missSymbol Defaults to period "." as missing value indicator.

... additional arguments for read.csv or read.xlsx.
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keynames Don’t use this unless you are very careful. In our current scheme, the column
names in a key should be c("name_old", "name_new", "class_old", "class_new",
"value_old", "value_new", "missings", "recodes"). If your key does not use
those column names, it is necessary to provide keynames in a format "our_name"="your_name".
For example, keynames = c(name_old = "oldvar", name_new = "newname",
class_old = "vartype", class_new = "class", value_old = "score", value_new =
"val").

Details

This can be either a wide or long format key file.

This cleans up variables in following ways. 1) name_old and name_new have leading and trailing
spaces removed 2) value_old and value_new have leading and trailing spaces removed, and if they
are empty or blank spaces, then new values are set as NA.

Policy change concerning empty "value_new" cells in input keys (20170929).

There is confusion about what ought to happen in a wide key when the user leaves value_new as
empty or missing. Literally, this means all values are converted to missing, which does not seem
reasonable. Hence, when a key is wide, and value_new is one of the na.strings elements, we assume
the value_new is to be copied from value_old. That is to say, if value_new is not supplied, the
values remain same as in old data.

In a long key, the behavior is different. Since the user can specify each value for a variable in a
separate row, the na.strings appearing in value_new are treated as missing scores in the new data set
to be created.

Value

key object, should be same "wide" or "long" as the input Missing symbols in value_old and value_new
converted to ".".

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

mydf.key.path <- system.file("extdata", "mydf.key.csv", package = "kutils")
mydf.key <- keyImport(mydf.key.path)
## Create some dupes
mydf.key <- rbind(mydf.key, mydf.key[c(1,7), ])
mydf.key2 <- keyImport(mydf.key)
mydf.key2
## create some empty value_new cells
mydf.key[c(3, 5, 7) , "value_new"] <- ""
mydf.key3 <- keyImport(mydf.key)
mydf.key3
mydf.keylong.path <- system.file("extdata", "mydf.key_long.csv", package = "kutils")
mydf.keylong <- keyImport(mydf.keylong.path)

## testDF is a slightly more elaborate version created for unit testing:
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testdf.path <- system.file("extdata", "testDF.csv", package = "kutils")
testdf <- read.csv(testdf.path, header = TRUE)
keytemp <- keyTemplate(testdf, long = TRUE)
## A "hand edited key file"
keyPath <- system.file("extdata", "testDF-key.csv", package="kutils")
key <- keyImport(keyPath)
keydiff <- keyDiff(keytemp, key)
key2 <- rbind(key, keydiff$neworaltered)
key2 <- unique(key)
if(interactive())View(key2)

keyLookup Look for old (or new) names in variable key

Description

Use the key to find the original name of a variable that has been renamed, or find the new name of
an original variable. The get argument indicates if the name_old or name_new is desired.

Usage

keyLookup(x, key, get = "name_old")

Arguments

x A variable name. If get = "name_old", then x is a value for name_new. If get =
"name_new", x should be a value for name_old.

key Which key should be used

get Either "name_old" (to retrieve the original name) or "name_new" (to get the new
name)

Details

If get = "name_old", the return is a character vector, with one element per value of x. If there is no
match for a value of x, the value NA is returned for that value. However, if get = "name_new", the
return might be either a vector (one element per value of x) or a list with one element for each value
of x. The list is returned when a value of x corresponds to more than one element in name_old.

Value

A vector or list of matches between x and either name_new or name_old elements in the key.

Author(s)

Paul Johnson
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Examples

mydf.key.path <- system.file("extdata", "mydf.key.csv", package = "kutils")
mydf.key <- keyImport(mydf.key.path)
mydf.key$name_new <- paste0("new_", mydf.key$name_new)
keyLookup("new_x5", mydf.key, get = "name_old")
keyLookup(c("new_x6", "new_x1"), mydf.key, get = "name_old")
keyLookup(c("x6", "x1"), mydf.key, get = "name_new")
keyLookup(c("asdf", "new_x1"), mydf.key, get = "name_old")

mydf.key <- rbind(mydf.key,
c("x3", "x3f", "ordered", "factor", "","","",""))

keyLookup(c("x3"), mydf.key, get = "name_new")
keyLookup(c("x1", "x3", "x5"), mydf.key, get = "name_new")

keyRead Read file after deducing file type from suffix.

Description

If the input is XLSX, sheets named "key" and "varlab" are imported if the exist. If input is CSV,
then the key CSV file is imported and another file suffixed with "-varlab" is imported if it exists.

Usage

keyRead(file, ..., na.strings = c("\\s+"))

Arguments

file name of file to be imported, including path to file. file name must end in "csv",
"xlsx" or "rds"

... additional arguments for read.csv or read.xlsx.

na.strings Values to be converted to R missing symbol NA. Default is white space, "\s+".

Details

The variable lables are a named vector saved as an attribute of the key object.

Value

A data frame or matrix.

Author(s)

Paul Johnson <pauljohn@ku.edu>
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keySave Save key as file after deducing type from suffix

Description

This is specialized to saving of key objects, it is not a general purpose function for saving things. It
scans the suffix of the file name and then does the right thing.

Usage

keySave(obj, file, na_ = ".", varlab)

Arguments

obj a variable key object

file file name. must end in "csv", "xlsx" or "rds"

na_ Value to insert to represent a missing score. Default ".".

varlab FALSE or TRUE. Default is FALSE, no new labels will be created. If a key
object has a varlab already, it is saved with the key, always. This parameter con-
trols whether a new varlab template should be created when the object is saved.
If TRUE and obj has no varlab attribute, a new varlab template is created by the
varlabTemplate function. If TRUE and a varlab attribute currently exists, but
some variables are missing labels, then varlabTemplate is called to fill in new
variable labels.

Details

In updates 2017-09, a varlab element was introduced. The varlab attribute of the object is saved.
The files created incorporate the variable labels object in different ways. 1) XLSX: variable labels
a worksheet named "varlab" 2) CSV: variable labels saved in a separate file suffixed "-varlab.csv".
3) RDS: varlab is an attribute of the key object.

Value

NULL if no file is created. Otherwise, a key object with an attribute varlab is returned.

Author(s)

Paul Johnson <pauljohn@ku.edu>
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keysPool Homogenize class values and create a long key by pooling variable
keys.

Description

For long-format keys, this is one way to correct for errors in "class_old" or "class_new" for common
variables. For a long key created by stacking together several long keys, or for a list of long keys,
this will try to homogenize the classes by using a "highest common denominator" approach. If one
key has x1 as a floating point, but another block of rows in the key has x1 as integer, then class
must be changed to floating point (numeric). If another section of a key has x1 as a character, then
character becomes the class.

Usage

keysPool(
keylong = NULL,
keysplit = NULL,
classes = list(c("logical", "integer"), c("integer", "numeric"), c("ordered",
"factor"), c("factor", "character")),

colnames = c("class_old", "class_new"),
textre = "TEXT$"

)

Arguments

keylong A list of long keys, or just one long key, presumably a result of rbinding several
long keys.

keysplit Not often needed for user-level code. A list of key blocks, each of which is to
be inspected and homogenized. Not used if a keylong argument is provided.

classes A list of vectors specifying legal promotions.

colnames Either c("class_old","class_new), ""class_old", or "class_new". The former is
the default.

textre A regular expression matching a column name to be treated as character. Default
matches any variable name ending in "TEXT"

Details

Users might run keyTemplate on several data sets, arriving at keys that need to be combined. The
long versions of the keys can be stacked together by a function like rbind. If the values class_old
and class_new for a single variable are inconsistent, then the "key stack" will fail the tests in key-
Check. This function automates the process of fixing the class variables by "promoting" classes
where possible.

Begin with a simple example. In one data set, the value of x is drawn from integers 1L, 2L, 3L, while
in another set it is floating values like 1.1, 2.2. After creating long format keys, and stacking them
together, the values of class_old will clash. For x, we will observe both "integer" and "numeric" in
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the class_old column. In that situation, the class_old for all of the rows under consideration should
be set as "numeric".

The promotion schemes are described by the variable classes, where we have the most conservative
changes first. The most destructive change is when variables are converted from integer to character,
for example. The conservative conversion strategies are specified in the classes variable, in which
the last element in a vector will be used to replace the preceeding classes. For example, c("ordered",
"factor", "character") means that the class_old values of "ordered" and "factor" will be replaced by
"character".

The conversions specified by classes are tried, in order. 1. logical -> integer 2. integer -> numeric
3. ordered -> factor

If their application fails to homogenize a vector, then class is changed to "character". For example,
when the value of class_old observed is c("ordered", "numeric", "character"). In that case, the class
is promoted to "character", it is the least common denominator.

Value

A class-corrected version of the same format as the input, either a long key or a list of key elements.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

dat1 <- data.frame(x1 = as.integer(rnorm(100)), x2 = sample(c("Apple", "Orange"),
100, replace = TRUE), x3 = ifelse(rnorm(100) < 0, TRUE, FALSE))

dat2 <- data.frame(x1 = rnorm(100), x2 = ordered(sample(c("Apple", "Orange"),
100, replace = TRUE)), x3 = rbinom(100, 1, .5),
stringsAsFactors = FALSE)

key1 <- keyTemplate(dat1, long = TRUE)
key2 <- keyTemplate(dat2, long = TRUE)
keys2stack <- rbind(key1, key2)
keys2stack.fix <- keysPool(keys2stack)
keys2stack.fix2 <- keysPool(keys2stack.fix, colname = "class_new")
## Sometimes this will not be able to homogenize
dat1 <- data.frame(x1 = as.integer(rnorm(100)),

x2 = sample(c("Apple", "Orange"), 100, replace = TRUE))
dat2 <- data.frame(x1 = rnorm(100),

x2 = sample(c("Apple", "Orange"), 100, replace = TRUE),
stringsAsFactors = FALSE)

key1 <- keyTemplate(dat1, long = TRUE)
key2 <- keyTemplate(dat2, long = TRUE)
## Create a stack of keys for yourself
keys2stack <- rbind(key1, key2)
keys.fix <- keysPool(keys2stack)
## We will create stack of keys for you
keys.fix2 <- keysPool(list(key1, key2))
## View(keys.fix)
## View(keys.fix2)
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## If you have wide keys, convert them with wide2long, either by
key1 <- keyTemplate(dat1)
key2 <- keyTemplate(dat2)
keysstack.wide <- rbind(wide2long(key1), wide2long(key2))
keys.fix <- keysPool(keysstack.wide)
## or
keysPool(list(wide2long(key1), wide2long(key2)))

keysPoolCheck Compares keys from different data sets; finds differences classes of
variables. This used to check for similarity of keys from various data
sets, one precursor to either combining the keys or merging the data
sets themselves.

Description

When several supposedly "equivalent" data sets are used to generate variable keys, there may be
trouble. If variables with same name have different classes, keyApply might fail when applied to
one of the data sets.

Usage

keysPoolCheck(keys, col = "class_old", excludere = "TEXT$")

Arguments

keys A list with variable keys.

col Name of key column to check for equivalence. Default is "class_old", but
"class_new" can be checked as well.

excludere Exclude variables matching a regular expression (re). Default example shows
exclusion of variables that end in the symbol "TEXT".

Details

This reports on differences in classes among keys. By default, it looks for differences in "class_old",
because that’s where we usually see trouble.

The output here is diagnostic. The keys can be fixed manually, or the function keysPool can imple-
ment an automatic correction.

Value

Data.frame summarizing class differences among keys

Author(s)

Paul Johnson
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Examples

set.seed(234)
dat1 <- data.frame(x1 = rnorm(100),

x2 = sample(c("Male", "Female"), 100, replace = TRUE),
x3_TEXT = "A", x4 = sample(1:10000, 100))

dat2 <- data.frame(x1 = rnorm(100), x2 = sample(c("Male", "Female"),
100, replace = TRUE),
x3_TEXT = sample(1:100, 100),
stringsAsFactors = FALSE)

key1 <- keyTemplate(dat1)
key2 <- keyTemplate(dat2)
keys <- list(key1, key2)
keysPoolCheck(keys)
## See problem in class_old
keysPoolCheck(keys, col = "class_old")
## problems in class_new
keysPoolCheck(keys, col = "class_new")
keysPoolCheck(keys, excludere = "TEXT$")

keyTemplate Create variable key template (in memory or in a file)

Description

A variable key is a human readable document that describes the variables in a data set. A key can
be revised and re-imported by R to recode data. This might also be referred to as a "programmable
codebook." This function inspects a data frame, takes notice of its variable names, their classes, and
legal values, and then it creates a table summarizing that information. The aim is to create a doc-
ument that principal investigators and research assistants can use to keep a project well organized.
Please see the vignette in this package.

Usage

keyTemplate(
dframe,
long = FALSE,
sort = FALSE,
file = NULL,
max.levels = 15,
missings = NULL,
missSymbol = ".",
safeNumericToInteger = TRUE,
trimws = "both",
varlab = FALSE

)
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Arguments

dframe A data frame

long Default FALSE.

sort Default FALSE. Should the rows representing the variables be sorted alphabet-
ically? Otherwise, they appear in the order in which they were included in the
original dataset.

file DEFAULT NULL, meaning no file is produced. Choose a file name ending in
either "csv" (for comma separated variables), "xlsx" (compatible with Microsoft
Excel), or "rds" (R serialization data). The file name will be used to select among
the 3 storage formats. XLSX output requires the openxlsx package.

max.levels How high is the limit on the number of values for discrete (integer, character,
and Date) variables? Default = 15. If observed number exceeds max.levels,
we conclude the author should not assign new values in the key and only the
missing value will be included in the key as a "placeholder". This does not
affect variables declared as factor or ordered variables, for which all levels are
included in all cases.

missings Values in exising data which should be treated as missing in the new key. Char-
acter string in format acceptable to the assignMissing function. Can be a string
with several missing indicators"1;2;3;(8,10);[22,24];> 99;< 2".

missSymbol Default ".". A character string used to represent missing values in the key that
is created. Relevant (mostly) for the key’s value_new column. Default is the
period, ".". Because R’s symbol NA can be mistaken for the character string
"NA", we use a different (hopefully unmistakable) symbol in the key.

safeNumericToInteger

Default TRUE: Should we treat values which appear to be integers as integers?
If a column is numeric, it might be safe to treat it as an integer. In many csv data
sets, the values coded c(1, 2, 3) are really integers, not floats c(1.0, 2.0, 3.0). See
safeInteger.

trimws Default is "both", user can change to "left", "right", or set as NULL to avoid any
trimming.

varlab A key can have a companion data structure for variable labels. Default is FALSE,
but the value may also be TRUE or a named vector of variable labels, such as
c("x1" = "happiness", "x2" = "wealth"). The labels become an attribute of
the key object. See Details for information on storage of varlabs in saved key
files.

Details

The variable key can be created in two formats, wide and long. The original style of the variable key,
wide, has one row per variable. It has a style for compact notation about current values and required
recodes. That is more compact, probably easier for experts to read, but perhaps more difficult to
edit. The long style variable key has one row per value per variable. Thus, in a larger project, the
long key can have many rows. However, in a larger project, the long style key is easier to edit with
a spread sheet program.

After a key is created, it should be re-imported into R with the kutils::keyImport function. Then
the key structure can guide the importation and recoding of the data set.
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Concerning the varlab attribute. Run attr(key, "varlab" to review existing labels, if any.

Storing the variable labels in files requires some care because the rds, xlsx, and csv formats have
different capabilities. The rds storage format saves all attributes without difficulty. In contrast,
because csv and xlsx do not save attributes, the varlabs are stored as separate character matrices.
For xlsx files, the varlab object is saved as a second sheet in xlsx file, while in csv a second file
suffixed "-varlab.csv" is created.

Value

A key in the form of a data frame. May also be saved on disk if the file argument is supplied. The
key may have an attribute "varlab", variable labels.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

set.seed(234234)
N <- 200
mydf <- data.frame(x5 = rnorm(N),

x4 = rpois(N, lambda = 3),
x3 = ordered(sample(c("lo", "med", "hi"),
size = N, replace=TRUE),
levels = c("med", "lo", "hi")),
x2 = letters[sample(c(1:4,6), N, replace = TRUE)],
x1 = factor(sample(c("cindy", "bobby", "marcia",

"greg", "peter"), N,
replace = TRUE)),
x7 = ordered(letters[sample(c(1:4,6), N, replace = TRUE)]),
x6 = sample(c(1:5), N, replace = TRUE),
stringsAsFactors = FALSE)

mydf$x4[sample(1:N, 10)] <- 999
mydf$x5[sample(1:N, 10)] <- -999

## Note: If we change this example data, we need to save a copy in
## "../inst/extdata" for packacing
dn <- tempdir()
write.csv(mydf, file = file.path(dn, "mydf.csv"), row.names = FALSE)
mydf.templ <- keyTemplate(mydf, file = file.path(dn, "mydf.templ.csv"),

varlab = TRUE)
mydf.templ_long <- keyTemplate(mydf, long = TRUE,

file = file.path(dn, "mydf.templlong.csv"),
varlab = TRUE)

mydf.templx <- keyTemplate(mydf, file = file.path(dn, "mydf.templ.xlsx"),
varlab = TRUE)

mydf.templ_longx <- keyTemplate(mydf, long = TRUE,
file = file.path(dn, "mydf.templ_long.xlsx"),
varlab = TRUE)

## Check the varlab attribute
attr(mydf.templ, "varlab")
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mydf.tmpl2 <- keyTemplate(mydf,
varlab = c(x5 = "height", x4 = "age",
x3 = "intelligence", x1 = "Name"))

## Check the varlab attribute
attr(mydf.tmpl2, "varlab")

## Try with the national longitudinal study data
data(natlongsurv)
natlong.templ <- keyTemplate(natlongsurv,

file = file.path(dn, "natlongsurv.templ.csv"),
max.levels = 15, varlab = TRUE, sort = TRUE)

natlong.templlong <- keyTemplate(natlongsurv, long = TRUE,
file = file.path(dn, "natlongsurv.templ_long.csv"), sort = TRUE)

if(interactive()) View(natlong.templlong)
natlong.templlong2 <- keyTemplate(natlongsurv, long = TRUE,

missings = "<0", max.levels = 50, sort = TRUE,
varlab = TRUE)

if(interactive()) View(natlong.templlong2)

natlong.templwide2 <- keyTemplate(natlongsurv, long = FALSE,
missings = "<0", max.levels = 50, sort = TRUE)

if(interactive()) View(natlong.templwide2)

all.equal(wide2long(natlong.templwide2), natlong.templlong2)

head(keyTemplate(natlongsurv, file = file.path(dn, "natlongsurv.templ.xlsx"),
max.levels = 15, varlab = TRUE, sort = TRUE), 10)

head(keyTemplate(natlongsurv, file = file.path(dn, "natlongsurv.templ.xlsx"),
long = TRUE, max.levels = 15, varlab = TRUE, sort = TRUE), 10)

list.files(dn)

keyTemplateSPSS Import an SPSS file, create a key representing the numeric -> factor
transition

Description

This is a way to keep track of the scores that are used in the SPSS file. It is also an easy way to start
a new variable key that makes it convenient to work on the value_new column with R text functions.

Usage

keyTemplateSPSS(dat, long = TRUE)

Arguments

dat A character string path to the SPSS file
long TRUE returns a long key, otherwise a wide key
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Value

A variable key (long or wide)

Author(s)

Paul Johnson <pauljohn@ku.edu>

keyTemplateStata Import a Stata (version 12 or lower) file, create a key representing the
numeric -> factor transition

Description

This is a way to keep track of the scores that are used in the Stata file. It is also an easy way to start a
new variable key that makes it convenient to work on the value_new column with R text functions.

Usage

keyTemplateStata(dat, long = TRUE)

Arguments

dat A character string path to the Stata file

long TRUE returns a long key, otherwise a wide key

Value

A variable key (long or wide)

Author(s)

Paul Johnson <pauljohn@ku.edu>

keyUpdate Update a key in light of a new data frame (add variables and values)

Description

The following chores must be handled. 1. If the data.frame has variables which are not currently
listed in the variable key’s "name_old" variable, then new variables are added to the key. 2. If the
data.frame has new values for the previously existing variables, then those values must be added to
the keys. 3. If the old key has "name_new" or "class_new" designated for variables, those MUST
be preserved in the new key for all new values of those variables.
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Usage

keyUpdate(key, dframe, append = TRUE, safeNumericToInteger = TRUE)

Arguments

key A variable key

dframe A data.frame object.

append If long key, should new rows be added to the end of the updated key? Default is
TRUE. If FALSE, new rows will be sorted with the original values.

safeNumericToInteger

Default TRUE: Should we treat variables which appear to be integers as inte-
gers? In many csv data sets, the values coded c(1, 2, 3) are really integers, not
floats c(1.0, 2.0, 3.0). See safeInteger. ## Need to consider implementing
this: ## @param ignoreCase

Details

This function will not alter key values for "class_old", "value_old" or "value_new" for variables
that have no new information.

This function deduces if the key provided is in the wide or long format from the class of the object.

Value

Updated variable key.

Author(s)

Ben Kite <bakite@ku.edu>

Examples

## Original data frame has 2 variables
dat1 <- data.frame("Score" = c(1, 2, 3, 42, 4, 2),

"Gender" = c("M", "M", "M", "F", "F", "F"))
## New data has all of original dat1, plus a new variable "Weight"
#and has new values for "Gender" and "Score"
dat2 <- plyr::rbind.fill(dat1, data.frame("Score" = 7,

"Gender" = "other", "Weight" = rnorm(3)))
## Create a long key for the original data, specify some
## recodes for Score and Gender in value_new
key1.long <- keyTemplate(dat1, long = TRUE, varlab = TRUE)

key1.long$value_new <- gsub("42", "10", key1.long$value_new)
key1.long$value_new[key1.long$name_new == "Gender"] <-

mgsub(c("F", "M"), c("female", "male"),
key1.long$value_new[key1.long$name_new == "Gender"])

key1.long[key1.long$name_old == "Score", "name_new"] <- "NewScore"
keyUpdate(key1.long, dat2, append = TRUE)
## Throw away one row, make sure key still has Score values
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dat2 <- dat2[-1,]
(key1.long.u <- keyUpdate(key1.long, dat2, append = FALSE))
## Key change Score to character variable
key1.longc <- key1.long
key1.longc[key1.longc$name_old == "Score", "class_new"] <- "character"
keyUpdate(key1.longc, dat2, append = TRUE)
str(dat3 <- keyApply(dat2, key1.longc))
## Now try a wide key
key1.wide <- keyTemplate(dat1)
## Put in new values, same as in key1.long
key1.wide[key1.wide$name_old == "Score", c("name_new", "value_new")] <-

c("NewScore", "1|2|3|4|10|.")
key1.wide[key1.wide$name_old == "Gender", "value_new"] <- "female|male|."
## Make sure key1.wide equivalent to key1.long:
## If this is not true, it is a fail
all.equal(long2wide(key1.long), key1.wide, check.attributes = FALSE)
(key1.wide.u <- keyUpdate(key1.wide, dat2))
key1.long.to.wide <- long2wide(key1.long.u)
all.equal(key1.long.to.wide, key1.wide.u, check.attributes = FALSE)
str(keyApply(dat2, key1.wide.u))

mydf.key.path <- system.file("extdata", "mydf.key.csv", package = "kutils")
mydf.key <- keyImport(mydf.key.path)
##'
set.seed(112233)
N <- 20
## The new Jan data arrived!
mydf2 <- data.frame(x5 = rnorm(N),

x4 = rpois(N, lambda = 3),
x3 = ordered(sample(c("lo", "med", "hi"),

size = N, replace=TRUE),
levels = c("med", "lo", "hi")),

x2 = letters[sample(c(1:4,6), N, replace = TRUE)],
x1 = factor(sample(c("jan"), N, replace = TRUE)),
x7 = ordered(letters[sample(c(1:4,6), N, replace = TRUE)]),
x6 = sample(c(1:5), N, replace = TRUE),
stringsAsFactors = FALSE)

mydf.key2 <- keyUpdate(mydf.key, mydf2)
mydf.key2
mydf.key2["x1", "value_old"] <- "cindy|bobby|jan|peter|marcia|greg|."
mydf.key2["x1", "value_new"] <- "Cindy<Bobby<Jan<Peter<Marcia<Greg<."
##'
mydf.key.path <- system.file("extdata", "mydf.key.csv", package = "kutils")
mydf.path <- system.file("extdata", "mydf.csv", package = "kutils")
mydf <- read.csv(mydf.path, stringsAsFactors=FALSE)
mydf3 <- rbind(mydf, mydf2)
## Now recode with revised key
mydf4 <- keyApply(mydf3, mydf.key2)
rockchalk::summarize(mydf4)

likert Percentage tables for Likert Scale variables
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Description

Creates a table with columns for allowed values and rows for variables.

Usage

likert(data, vlist, columnlabels, valuelabels, rows = FALSE, digits = 2, ...)

Arguments

data A data frame. Function will try to include all variables in data, unless vlist is
provided.

vlist A vector of column names in data that should be displayed

columnlabels Column labels, optional to beautify variable names. If not supplied, column
names will be used as column labels. Provide either 1) A named vector that re-
places one or more columns, c(oldname1 = "newlabel1", oldname2 = "newlabel2")
where oldnames are in colnames(data), or 2) a vector of same length as vlist (or
data if vlist is not supplied) that will replace them one for one.

valuelabels A vector of values to beautify existing levels. If not supplied, factor levels will
be used as row labels

rows Should output be transposed. This may help if there are many variables that need
to fit on the page. Percentages will appear on the rows, rather than columns.

digits Number of decimals to display in percentages

... Arguments to pass to R’s table function. We suggest useNA = "always" to add
missing value information and exclude = original.value.label to exclude
values observed. Currently, useNA = "ifany" does not work as expected, the
number of missings will be displayed, even if there are none.

Value

A list, including a frequency table (called "freqTab"), column counts ("counts"), column sums
("sums"), and column percents ("pcts").

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

vvector <- c("Strongly Disagree", "Disagree", "Neutral",
"Agree", "Strongly Agree")

set.seed(2342234)
N <- 28
scales <-

data.frame(Vegas = factor(sample(1:5, N, replace = TRUE),
levels = 1:5, labels = vvector),

NewYork = factor(sample(1:5, N, replace = TRUE),
levels = 1:5, labels = vvector),

Paris = factor(sample(1:5, N, replace = TRUE),
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levels = 1:5, labels = vvector),
Berlin = factor(sample(1:5, N, replace = TRUE),

levels = 1:5, labels = vvector))

likert(scales)

likert(scales, exclude = "Disagree")

likert(scales, exclude = "Strongly Disagree", useNA = "ifany")

(mySummary1 <- likert(data = scales, vlist = c("Vegas", "NewYork", "Paris")))
mySummary1[["pcts"]]

(mySummary2 <- likert(scales, vlist = c("Vegas", "NewYork", "Paris"),
valuelabels = c("SD", "D", "N", "A", "SA")))

(mySummary3 <- likert(scales, vlist = c("Vegas", "NewYork", "Paris"),
valuelabels = c("Strongly Disagree" = "Strong Disagreement")))

(mySummary5 <- likert(scales, vlist = c("Vegas", "NewYork", "Paris"),
valuelabels = c("SD", "D", "N", "A", "SA"),
columnlabels = c("Vegas" = "Sin City"), rows = TRUE))

## Example of how one might write this in a file.
## print(xtable::xtable(mySummary1[[1]], digits = 1),
## type = "html", file = "varCount-1.html")

long2wide convert a key object from long to wide format

Description

##’ This is not flexible, assumes columns are named in our canonical style, which means the
columns are named c("name_old", "name_new", "class_old", "class_new", "value_old", "value_new").

Usage

long2wide(
keylong,
na.strings = c("\\.", "", "\\s+", "N/A"),
missSymbol = "."

)

Arguments

keylong A variable key in the long format

na.strings Strings to be treated as missings in value_new

missSymbol Default is ".", character to insert in value when R NA is found.
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Value

A wide format variable key

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

mydf.path <- system.file("extdata", "mydf.csv", package = "kutils")
mydf <- read.csv(mydf.path, stringsAsFactors=FALSE)
## A wide key we are trying to match:
mydf.key <- keyTemplate(mydf, long = FALSE, sort = TRUE)
mydf.key["x4", "missings"] <- "999"
## A long key we will convert next
mydf.keylong <- keyTemplate(mydf, long = TRUE, sort = TRUE)
mydf.keylong[mydf.keylong[ , "name_old"] == "x4" &

mydf.keylong[ , "value_old"] == "999", "missings"] <- "999"
mydf.long2wide <- long2wide(mydf.keylong)
all.equal(mydf.key, mydf.long2wide)

mydf.keylong.path <- system.file("extdata", "mydf.key_long.csv", package = "kutils")
mydf.keylong <- keyImport(mydf.keylong.path)
mydf.keywide <- long2wide(mydf.keylong)
mydf.keylong2 <- wide2long(mydf.keywide)
## Is error if following not TRUE
all.equal(mydf.keylong2, mydf.keylong)

mergeCheck First draft of function to diagnose problems in merges and key vari-
ables

Description

This is a first effort. It works with 2 data frames and 1 key variable in each. It does not work if the
by parameter includes more than one column name (but may work in future). The return is a list
which includes full copies of the rows from the data frames in which trouble is observed.

Usage

mergeCheck(
x,
y,
by,
by.x = by,
by.y = by,
incomparables = c(NULL, NA, NaN, Inf, "\\s+", "")

)
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Arguments

x data frame

y data frame

by Commonly called the "key" variable. A column name to be used for merging
(common to both x and y)

by.x Column name in x to be used for merging. If not supplied, then by.x is assumed
to be same as by.

by.y Column name in y to be used for merging. If not supplied, then by.y is assumed
to be same as by.

incomparables values in the key (by) variable that are ignored for matching. We default to
include these values as incomparables: c(NULL, NA, NaN, Inf, "\s+", ""). Note
this is a larger list of incomparables than assumed by R merge (which assumes
only NULL).

Value

A list of data structures that are displayed for keys and data sets. The return is list(keysBad,
keysDuped, unmatched). unmatched is a list with 2 elements, the unmatched cases from x and y.

Author(s)

Paul Johnson

Examples

df1 <- data.frame(id = 1:7, x = rnorm(7))
df2 <- data.frame(id = c(2:6, 9:10), x = rnorm(7))
mc1 <- mergeCheck(df1, df2, by = "id")
## Use mc1 objects mc1$keysBad, mc1$keysDuped, mc1$unmatched
df1 <- data.frame(id = c(1:3, NA, NaN, "", " "), x = rnorm(7))
df2 <- data.frame(id = c(2:6, 5:6), x = rnorm(7))
mergeCheck(df1, df2, by = "id")
df1 <- data.frame(idx = c(1:5, NA, NaN), x = rnorm(7))
df2 <- data.frame(idy = c(2:6, 9:10), x = rnorm(7))
mergeCheck(df1, df2, by.x = "idx", by.y = "idy")

mgsub apply a vector of replacements, one after the other.

Description

This is multi-gsub. Use it when it is necessary to process many patterns and replacements in a given
order on a vector.

Usage

mgsub(pattern, replacement, x, ...)
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Arguments

pattern vector of values to be replaced. A vector filled with patterns as documented in
the gsub pattern argument

replacement vector of replacements, otherwise same as gsub. Length of replacement must
be either 1 or same as pattern, otherwise an error results.

x the vector in which elements are to be replaced, same as gsub

... Additional arguments to be passed to gsub

Value

vector with pattern replaced by replacement

Author(s)

Jared Harpole <jared.harpole@gmail.com> and Paul Johnson <pauljohn@ku.edu>

Examples

x <- c("Tom", "Jerry", "Elmer", "Bugs")
pattern <- c("Tom", "Bugs")
replacement <- c("Thomas", "Bugs Bunny")
(y <- mgsub(pattern, replacement, x))
x[1] <- "tom"
(y <- mgsub(pattern, replacement, x, ignore.case = TRUE))
(y <- mgsub(c("Elmer", "Bugs"), c("Looney Characters"), x, ignore.case = TRUE))

modifyVector Use new information to update a vector. Similar in concept to R’s
modify list

Description

Original purpose was to receive 2 named vectors, x and y, and copy "updated" named values from
y into x. If x or y are not named, however, this will do something useful.

• Both vectors are named: values in x for which y names match will be updated with values
from y. If augment is true, then named values in y that are not present in x will be added to x.

• If neither vector is named: returns a new vector with x as the values and y as the names. Same
as returning names(x) <- y.

• If x is not named, y is named: replaces elements in x with values of y where suitable (x
matches names(y)). For matches, returns x = y[x] if names(y) include x.

• If x is named, y is not named: returns y, but with names from x. Lengths of x and y must be
identical.

• If y is NULL or not provided, x is returned unaltered.
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Usage

modifyVector(x, y, augment = FALSE, warnings = FALSE)

Arguments

x vector to be updated, may be named or not.

y possibly a named vector. If unnamed, must match length of x. If named, and
length is shorter than x, then name-value pairs in x will be replaced with name-
value pairs with y. If names in y are not in x, the augment argument determines
the result.

augment If TRUE, add new items in x from y. Otherwise, ignore named items in y that
are not in x.

warnings Defaults as FALSE. Show warnings about augmentation of the target vector.

Value

an updated vector

Author(s)

Paul Johnson

Examples

x <- c(a = 1, b = 2, c = 3)
y <- c(b = 22)
modifyVector(x, y)
y <- c(c = 7, a = 13, e = 8)
## If augment = TRUE, will add more elements to x
modifyVector(x, y, augment = TRUE)
modifyVector(x, y)
x <- c("a", "b", "c")
y <- c("income", "education", "sei")
## Same as names(x) <- y
modifyVector(x, y)
x <- c("a", "b", "c")
y <- c(a = "happy")
modifyVector(x, y)
y <- c(a = "happy", g = "glum")
## Will give error unless augment = TRUE
modifyVector(x, y, augment = TRUE)
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n2NA Convert nothing to R missing(NA).

Description

By "nothing", we mean white space or other indications of nothingness. Goal is to find character
strings that users might insert in a key to indicate missing values. Those things, which are given
default values in the argument nothings, will be changed to NA.

Usage

n2NA(x, nothings = c("\\.", "\\s"), zapspace = TRUE)

Arguments

x A character vector. If x is not a character vector, it is returned unaltered without
warning.

nothings A vector of values to be matched by regular expressions as missing. The default
vector is c("\.", "\s"), where "\." means a literal period (backslashes needed to
escape the symbol which would otherwise match anything in a regular expres-
sion).

zapspace Should leading and trailing white space be ignored, so that, for example " . "
and "." are both treated as missing.

Details

Using regular expression matching, any value that has nothing except for the indicated "nothing"
values is converted to NA. The "nothing" values included by default are a period by itself (A SAS
missing value), an empty string, or white space, meaning " ", or any number of spaces, or a tab.

Value

A vector with "nothing" values replaced by R’s NA symbol. Does not alter other values in the
vector. Previous version had applied zapspace to non-missing values, but it no longer does so.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

gg <- c("", " ", " ", "\t", "\t some", "some\t", " space first", ".",
" . ")

n2NA(x = gg)
n2NA(x = gg, zapspace = FALSE)
n2NA(x = gg, nothings = c("\\s"), zapspace = FALSE)
n2NA(x = gg, nothings = c("\\."), zapspace = TRUE)
n2NA(x = gg, nothings = c("\\."), zapspace = FALSE)
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natlongsurv Smoking, Happiness, and other survey responses

Description

An idiosyncratic selection of 29 variables from the Original Cohort-Young Women 1968-2003 edi-
tion of the US National Longitudinal Survey. This originally included 5159 rows, but subset in-
cludes only 2867 rows, so sample frequencies will not match the values listed in the codebook. A
snapshot of the codebook, "natlongsurv.cdb.txt", which we have trimmed down, is included in the
package.

Usage

data(natlongsurv)

Format

A data frame with 2867 rows and 29 variables:

• R0000100 IDENTIFICATION CODE

• R0003300 MARITAL STATUS, 1968

• R0005700 AGE WHEN STOPPED ATTENDING SCHOOL, 1968

• R0060300 IQ SCORE, 1968

• R1051600 HIGHEST GRADE COMPLETED

• R1302000 SMOKING - DOES R SMOKE, 1991

• R1302100 SMOKING - NUMBER OF CIGARETTES R SMOKES PER DAY, 91 (PRESENT
SMOKER)

• R6235600 HIGHEST GRADE COMPLETED

• R6502300 IS RESIDENCE/LIVING QUARTERS HOME/APARTMENT/OTHER?

• R6513700 HOUSEHOLD RECORD - HOUSEHOLD MEMBER - AGE CALCULATED
FROM BIRTH DATE

• R6516200 CURRENT MARITAL STATUS

• R6520300 HIGHEST GRADE COMPLETED OF HUSBAND

• R6553600 HIGHEST GRADE COMPLETED OF PARTNER

• R7289200 SMOKING - CURRENTLY SMOKE CIGARETTES

• R7289400 ALCOHOL USE - HAS R CONSUMED ANY ALCOHOLIC BEVERAGES IN
PAST MONTH?

• R7293430 YOUNG WOMEN 20-ITEM CES-D ITEM RESPONSE SCORE

• R7312300 INCOME FROM WAGES/SALARY IN PAST YEAR

• R7329900 INCOME ADEQUACY: R OPINION OF HER HAPPINESS WITH HER/FAMILY
INCOME
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• R7330000 INCOME ADEQUACY: R OPINION OF AMOUNT NEEDED TO MAKE ENDS
MEET $ AMOUNT

• R7337600 R HAS ATTENDED/COMPLETED TWO/MORE YEARS OF COLLEGE

• R7344600 ATTITUDE TOWARD FEELINGS OVERALL

• R7344700 DID R DO ANY UNPAID VOLUNTEER WORK IN PAST YEAR?

• R7347500 ATTITUDE TOWARD SOCIAL SECURITY - PERCENT WOULD INVEST IN
STOCKS? 2004

• R7347600 ATTITUDE TOWARD SOCIAL SECURITY - PERCENT WOULD INVEST IN
BONDS OF PRIVATE COMPANIES? 2004

• R7347700 ATTITUDE TOWARD SOCIAL SECURITY - PERCENT WOULD INVEST IN
U.S. GOVERNMENT BONDS? 2004

• R7477700 TOTAL CHILDREN IN ROSTER

• R7477800 COUNT ELIGIBLE HOUSEHOLD CHILDREN

• R7610300 REGION OF RESIDENCE

Details

All variables are for the 2003 year, except where otherwise noted.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Source

National Longitudinal Surveys public-use data set (Bureau of Labor Statistics, 2018).

References

Bureau of Labor Statistics. 2018. NLS Original Cohort: Mature and Young Women, US National
Longitudinal Surveys Public Use Data Sets (www.bls.gov/nls/home.htm).

Examples

data(natlongsurv)
peek(natlongsurv, ask = FALSE, file = paste0(tempdir(), "/","peek.pdf"))
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padW0 Insert 0’s in the front of existing digits or characters so that all ele-
ments of a vector have the same number of characters.

Description

The main purpose was to correct ID numbers in studies that are entered as integers with leading 0’s
as in 000001 or 034554. R’s default coercion of integers will throw away the preceding 0’s, and
reduce that to 1 or 34554. The user might want to re-insert the 0’s, thereby creating a character
vector with values "000001" and "045665".

Usage

padW0(x, n = 0)

Arguments

x vector to be converted to a character variable by inserting 0’s at the front. Should
be integer or character, floating point numbers will be rounded down. All other
variable types will return errors.

n Optional parameter. The desired final length of character vector. This parameter
is a guideline to determine how many 0’s must be inserted. This will be ignored
if n is smaller than the number of characters in the longest element of x.

Details

If x is an integer or a character vector, the result is the more-or-less expected outcome (see exam-
ples). If x is numeric, but not an integer, then x will be rounded to the lowest integer.

The previous versions of this function failed when there were missing values (NA) in the vector x.
This version returns NA for those values.

One of the surprises in this development was that sprintf() in R does not have a known consequence
when applied to a character variable. It is platform-dependent (unredictable). On Ubuntu Linux
16.04, for example sprintf("%05s", 2) gives back " 2", rather than (what I expected) "00002".
The problem is mentioned in the documentation for sprintf. The examples show this does work
now, but please test your results.

Value

A character vector

Author(s)

Paul Johnson <pauljohn@ku.edu>
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Examples

x1 <- c(0001, 0022, 3432, NA)
padW0(x1)
padW0(x1, n = 10)
x2 <- c("1", "22", "3432", NA)
padW0(x2)
## There's been a problem with strings, but this works now.
## It even preserves non-leading spaces. Hope that's what you want.
x3 <- c("1", "22 4", "34323 42", NA)
padW0(x3)
x4 <- c(1.1, 334.52, NA)
padW0(x4)

peek Show variables, one at a time, QUICKLY and EASILY.

Description

This makes it easy to quickly scan through all of the columns in a data frame to spot unexpected
patterns or data entry errors. Numeric variables are depicted as histograms, while factor and char-
acter variables are summarized by the R table function and then presented as barplots. This is
most useful with a large screen graphic device (try running the function provided with this package,
dev.create(height=7, width=7)) or any other method you prefer to create a large device.

Usage

peek(
dat,
sort = TRUE,
file = NULL,
textout = FALSE,
ask,
...,
xlabstub = "kutils peek: ",
freq = FALSE,
histargs = list(probability = !freq),
barargs = list(horiz = TRUE, las = 1)

)

Arguments

dat An R data frame or something that can be coerced to a data frame by as.data.frame

sort Default TRUE. Do you want display of the columns in alphabetical order?

file Should output go in file rather than to the screen. Default is NULL, meaning
show on screen. If you supply a file name, we will write PDF output into it.

textout If TRUE, counts from histogram bins and tables will appear in the console.
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ask As in the old style R par(ask = TRUE): should keyboard interaction advance to
the next plot. Will default to false if the file argument is non-null. If file is null,
setting ask = FALSE will cause graphs to whir bye without pausing.

... Additional arguments for the pdf, histogram, table, or barplot functions. Please
see Details below.

xlabstub A text stub that will appear in the x axis label. Currently it includes advertising
for this package.

freq As in the histogram frequency argument. Should graphs show counts (freq =
TRUE) or proportions (AKA densities) (freq = FALSE)

histargs A list of arguments to be passed to the hist function.

barargs A list of arguments to be passed to the barplot function.

Value

A vector of column names that were plotted

Try the Defaults

Every effort has been made to make this simple and easy to use. Please run the examples as they
are before becoming too concerned about customization. This function is intended for getting a
quick look at each variable, one-by-one, it is not intended to create publication quality histograms.
For sake of the fastidious users, a lot of settings can be adjusted. Users can control the parameters
for presentation of histograms (parameters for hist) and barplots (parameters for barplot). The
function also can create frequency tables (which users can control by providing additional named
arguments).

Style

The histograms are standard, upright histograms. The barplots are horizontal. I chose to make the
bars horizontal because long value labels are more easily accomodated on the left axis. The code
measures the length (in inches) for strings and the margin is increased accordingly. The examples
have a demonstration of that effect.

Dealing with Dots

additional named arguments, ..., are inspected and sorted into groups intended to control use of R
functions hist, barplot, table and pdf.

The parameters c("exclude", "dnn", "useNA", "deparse.level") and will go to the table function,
which is used to make barplots for factor and character variables. These named arguments are
extracted and sent to the pdf function: c("width", "height", "onefile", "family", "title", "fonts",
"version", "paper", "encoding", "bg", "fg", "pointsize", "pagecentre", "colormodel", "useDing-
bats", "useKerning", "fillOddEven", "compress"). Any other arguments that are unique to hist
or barplot are sorted out and sent only to those functions.

Any other arguments, including graphical parameters will be sent to both the histogram and barplot
functions, so it is a convenient way to obtain uniform appearance. Additional arguments that are
common to barplot and hist will work, and so will any graphics parameters (named arguments of
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par, for example). However, if one wants to target some arguments to hist, but not barplot, then
the histargs list argument should be used. Similarly, barargs should be used to send argument
to the barplot function. Warning: the defaults for histargs and barargs include some settings
that are needed for the existing design. If new lists for histargs or barargs are supplied, the
previously specified defaults are lost. Hence, users should include the existing members of those
lists, possibly with revised values.

All of this argument sorting effort is done in order to reduce a prolific number of warnings that
were observed in previous editions of this function.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

set.seed(234234)
N <- 200
mydf <- data.frame(x5 = rnorm(N), x4 = rnorm(N), x3 = rnorm(N),

x2 = letters[sample(1:24, 200, replace = TRUE)],
x1 = factor(sample(c("cindy", "bobby", "marsha",

"greg", "chris"), 200, replace = TRUE)),
stringsAsFactors = FALSE)

## Insert 16 missings
mydf$x1[sample(1:150, 16,)] <- NA
mydf$adate <- as.Date(c("1jan1960", "2jan1960", "31mar1960", "30jul1960"), format = "%d%b%y")
peek(mydf)
peek(mydf, sort = FALSE)
## Demonstrate the dot-dot-dot usage to pass in hist params
peek(mydf, breaks = 30, ylab = "These are Counts, not Densities", freq = TRUE)
## Not Run: file output
## peek(mydf, sort = FALSE, file = "three_histograms.pdf")
## Use some objects from the datasets package
library(datasets)
peek(cars, xlabstub = "R cars data: ")
peek(EuStockMarkets, xlabstub = "Euro Market Data: ")
peek(EuStockMarkets, xlabstub = "Euro Market Data: ", breaks = 50,

freq = TRUE)
## Not run: file output
## peek(EuStockMarkets, breaks = 50, file = "myeuro.pdf",
## height = 4, width=3, family = "Times")
## peek(EuStockMarkets, breaks = 50, file = "myeuro-%d3.pdf",
## onefile = FALSE, family = "Times", textout = TRUE)
## xlab goes into "..." and affects both histograms and barplots
peek(mydf, breaks = 30, ylab = "These are Counts, not Densities",

freq = TRUE)
## xlab is added in the barargs list.
peek(mydf, breaks = 30, ylab = "These are Counts, not Densities",

freq = TRUE, barargs = list(horiz = TRUE, las = 1, xlab = "I'm in barargs"))
peek(mydf, breaks = 30, ylab = "These are Counts, not Densities", freq = TRUE,

barargs = list(horiz = TRUE, las = 1, xlim = c(0, 100),
xlab = "I'm in barargs, not in histargs"))
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levels(mydf$x1) <- c(levels(mydf$x1), "arthur philpot smythe")
mydf$x1[4] <- "arthur philpot smythe"
mydf$x2[1] <- "I forgot what letter"
peek(mydf, breaks = 30,

barargs = list(horiz = TRUE, las = 1))

print.keycheck Print out the result of mergeCheck function.

Description

This is a placeholder for a more elaborate print method to be prepared in the future. Please advise
us what might be most helpful.

Usage

## S3 method for class 'keycheck'
print(x, ...)

Arguments

x keycheck output from mergeCheck

... Other arguments

Value

None, side effect if print to screen

Author(s)

Paul Johnson

print.keyDiff Print a keyDiff object

Description

Print a keyDiff object

Usage

## S3 method for class 'keyDiff'
print(x, ...)
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Arguments

x A keyDiff object

... Other arguments passed through to print

Author(s)

Ben Kite <bakite@ku.edu>

print.likert print method for likert tables

Description

Nothing fancy here. cat is called on first item in list

Usage

## S3 method for class 'likert'
print(x, ...)

Arguments

x likert object, 1st item will be printed

... Arguments passed to print method

Value

Nothing

Author(s)

Paul Johnson <pauljohn@ku.edu>

qualtricsBlockStack Create meta data frame to align identical questions

Description

Qualtrics returns a data frame that has vertical "blocks", one for each "treatment condition" in an
experimental condition. Researchers often want to align the questions from the blocks vertically,
essentially converting the Qualtrics "wide" format to a "long" format. This is a helper function that
identifies questions that may need to be stacked together. The input is a meta data structure (can
be retrieved as an attribute from importQualtrics). It will find out which questions are identical and
prepare to re-align ("stack") the columns.
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Usage

qualtricsBlockStack(meta, questionname = "question")

Arguments

meta A meta data structure retrieved from importQualtrics

questionname Character string for name of column in meta data that holds the questions

Value

A new meta data table that horizontally aligns equivalent questions.

Author(s)

Paul Johnson

removeMatches Remove elements if they are in a target vector, possibly replacing with
NA

Description

If a vector has c("A", "b", "c") and we want to remove "b" and "c", this function can do the work. It
can also replace "b" and "c" with the NA symbol.

Usage

removeMatches(x, y, padNA = FALSE)

Arguments

x vector from which elements are to be removed

y shorter vector of elements to be removed

padNA Default FALSE, Should removed items be replaced with NA values?

Details

If elements in y are not members of x, they are silently ignored.

The code for this is not complicated, but it is difficult to remember. Here’s the recipe to remove
elements y from x: x <- x[!x %in% y[y %in% x]]. It is easy to get that wrong when in a hurry, so
we use this function instead. The padNA was an afterthought, but it helps sometimes.

Value

a vector with elements in y removed
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Author(s)

Ben Kite <bakite@ku.edu> and Paul Johnson <pauljohn@ku.edu>

Examples

x <- c("a", "b", "c", "d", "e", "f")
y <- c("e", "a")
removeMatches(x, y)
y <- c("q", "r", "s")
removeMatches(x, y)

reverse Reverse the levels in a factor

Description

Simple literal reversal. Will stop with an error message if x is not a factor (or ordered) variable.

Usage

reverse(x, eol = c("Skip", "DNP"))

Arguments

x a factor variable

eol values to be kept at the end of the list. Does not accept regular expresssions, just
literal text strings representing values.

Details

Sometimes people want to reverse some levels, excluding others and leaving them at the end of the
list. The "eol" argument sets aside some levels and puts them at the end of the list of levels.

The use case for the eol argument is a factor with several missing value labels, as appears in SPSS.
With up to 18 different missing codes, we want to leave them at the end. In the case for which this
was designed, the researcher did not want to designate those values as missing before inspecting the
pattern of observed values.

Value

a new factor variable with reversed values

Author(s)

Paul Johnson <pauljohn@ku.edu>
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Examples

## Consider alphabetication of upper and lower
x <- factor(c("a", "b", "c", "C", "a", "c"))
levels(x)
xr1 <- reverse(x)
xr1
## Keep "C" at end of list, after reverse others
xr2 <- reverse(x, eol = "C")
xr2
y <- ordered(x, levels = c("a", "b", "c", "C"))
yr1 <- reverse(y)
class(yr1)[1] == "ordered"
yr1
## Hmm. end of list amounts to being "maximal".
## Unintended side-effect, but interesting.
yr2 <- reverse(y, eol = "C")
yr2
## What about a period as a value (SAS missing)
z <- factor(c("a", "b", "c", "b", "c", "."))
reverse(z)
z <- factor(c(".", "a", "b", "c", "b", "c", "."))
reverse(z)
## How about R NA's
z <- factor(c(".", "a", NA, "b", "c", "b", NA, "c", "."))
z
reverse(z)
z <- ordered(c(".", "a", NA, "b", "c", "b", NA, "c", "."))
z
str(z)
## Put "." at end of list
zr <- reverse(z, eol = ".")
zr
str(zr)
z <- ordered(c(".", "c", NA, "e", "a", "c", NA, "e", "."),

levels = c(".", "c", "e", "a"))
reverse(z, eol = ".")
reverse(z, eol = c("a", "."))

safeInteger If a numeric variable has only integer values, then make it an integer.

Description

Users often accidentally create floating point numeric variables when they really mean integers,
such as c(1, 2, 3), when they should have done c(1L, 2L, 3L). Before running as.integer() to
coerce the variable, we’d rather be polite and ask the variable "do you mind being treated as if you
are an integer?" This function checks to see if the variable is "close enough" to being an integer,
and then coerces as integer. Otherwise, it returns NULL. And issues a warning.
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Usage

safeInteger(
x,
tol = .Machine$double.eps,
digits = 7,
vmax = .Machine$integer.max,
verbose = FALSE

)

Arguments

x a numeric variable
tol Tolerance value. Defaults to Machine$double.eps. See details.
digits Digits value passed to the zapsmall function. Defaults to 7.
vmax Maximum value allowed for an integer. Defaults to Machine$integer.max.
verbose Default FALSE: print warnings about x

Details

First, calculate absolute value of differences between x and as.integer(x). Second, find out if the
sum of those differences is smaller than tol. If so, then x can reasonably be coerced to an integer.

Be careful with the return. The correct return value for variables that should not be coerced as
integer is uncertain at this point. We’ve tested various strategies, sometimes returning FALSE,
NULL, or just the original variable.

Value

Either an integer vector or the original variable

Author(s)

Paul Johnson <pauljohn@ku.edu> and Ben Kite <bakite@ku.edu>

Examples

x1 <- c(1, 2, 3, 4, 5, 6)
is.integer(x1)
is.double(x1)
is.numeric(x1)
(x1int <- safeInteger(x1))
is.integer(x1int)
is.double(x1int)
is.numeric(x1int)
x2 <- rnorm(100)
x2int <- safeInteger(x2)
head(x2int)
x3 <- factor(x1, labels = c(LETTERS[1:6]))
x3int <- safeInteger(x3)
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shorten Reduce each in a vector of strings to a given length

Description

This is a simple "chop" at k characters, no fancy truncation at spaces or such. Optionally, this will
make unique the resulting truncated strings. That way, truncation at character 4 of "Washington"
and "Wash" and "Washingham" will not result in 3 values of "Wash", but rather "Wash", "Wash.1",
and "Wash.2"

Usage

shorten(x, k = 20, unique = FALSE)

Arguments

x character string

k integer limit on length of string. Default is 20

unique Default FALSE

Value

vector of character variables no longer than k

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

x <- c("Washington", "Washingham", "Washmylaundry")
shorten(x, 4)
shorten(x, 4, unique = TRUE)

starsig How many stars would we need for this p value?

Description

Regression table makers need to know how many stars to attach to parameter estimates. This takes
p values and a vector which indicates how many stars are deserved. It returns a required number of
asterixes. Was named "stars" in previous version, but renamed due to conflict with R base function
stars



64 statdatKey

Usage

starsig(pval, alpha = c(0.05, 0.01, 0.001), symbols = c("*", "**", "***"))

Arguments

pval P value

alpha alpha vector, defaults as c(0.05, 0.01, 0.001).

symbols The default is c("*", "**", "***"), corresponding to mean that p values smaller
than 0.05 receive one star, values smaller than 0.01 get two stars, and so forth.
Must be same number of elements as alpha. These need not be asterixes, could
be any character strings that users desire. See example.

Details

Recently, we have requests for different symbols. Some people want a "+" symbol if the p value
is smaller than 0.10 but greater than 0.05, while some want tiny smiley faces if p is smaller than
0.001. We accomodate that by allowing a user specified vector of symbols, which defaults to c("*",
"**", "***")

Value

a character vector of symbols (eg asterixes), same length as pval

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

starsig(0.06)
starsig(0.021)
starsig(0.001)
alpha.ex <- c(0.10, 0.05, 0.01, 0.001)
symb.ex <- c("+", "*", "**", ":)!")
starsig(0.07, alpha = alpha.ex, symbols = symb.ex)
starsig(0.04, alpha = alpha.ex, symbols = symb.ex)
starsig(0.009, alpha = alpha.ex, symbols = symb.ex)
starsig(0.0009, alpha = alpha.ex, symbols = symb.ex)

statdatKey keyFactors: private function that does work for keyTemplateSPSS and
key template Stata

Description

keyFactors: private function that does work for keyTemplateSPSS and key template Stata
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Usage

statdatKey(datf, datn, long = TRUE)

Arguments

datf Data frame with factors

datn Numeric data frame

long Should the result be a long or wide key

stringbreak Insert "\n" after the k’th character in a string. This IS vectorized, so
can receive just one or many character strings in a vector.

Description

If a string is long, insert linebreak "\n"

Usage

stringbreak(x, k = 20)

Arguments

x Character string.

k Number of characters after which to insert "\n". Default is 20

Details

If x is not a character string, x is returned without alteration. And without a warning

Value

Character with "\n" inserted

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

x <- "abcdef ghijkl mnopqrs tuvwxyz abc def ghi jkl mno pqr stv"
stringbreak(x, 10)
stringbreak(x, 20)
stringbreak(x, 25)
x <- c("asdf asdfjl asfdjkl asdfjklasdfasd", "qrweqwer qwerqwerjklqw erjqwe")
stringbreak(x, 5)
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truncsmart Cuts a string at a specified linewidth, trying to align cut with a sepa-
rator

Description

Some strings are simply too long. We don’t want to chop them exactly at, say, 40 characters, if we
could allow 42 and chop on a space or other separator. We’d rather chop at 37 if there is a separator,
rather than terminate a word exactly at 40. This function shortens them and attempt to cut at a
separator, allowing for a user specified fudge-factor (the tol parameter).

Usage

truncsmart(
x,
target = 20,
tol = c(5, 3),
separators = c(" ", "_", ";", ","),
capwidth = 1

)

Arguments

x character or vector of characters

target Goal for result length, in characters

tol number of characters forward/back to check; if single value then only backwards
checking

separators characters at which truncation is preferred, such as space or underscore.

capwidth penalty for capital characters

Details

The default capwidth value is 1, so the calculations treat all letters equally. In practice, we notice
trouble when some strings are written in ALL CAPS and they are longer than the same information
in lower case letters. We have decided to allow a user-specified penalty for capital letters. If each
capital counts for, say 1.2 ordinary letters, then we may end up truncating the string on an earlier
separator.

There’s some approximation here. The capital-penalized widths are calculated for all characters
and then we left-shift the target value so that it is equal to the last penalized value that is under the
target length. Then the "look to the left" and "look to the right" logic begins. That looking logic
ignores the capital letter penalty, it is treating all letters the same.

Value

shorter string truncated at acceptable separators when found
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Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

x <- "Aasdf asdIasdf fW_asd asd aasjdf_as fasdasdfasdfasd"
truncsmart(x, target = 10, tol = c(5, 2))
truncsmart(x, target = 10, tol = c(1, 4))
truncsmart(x, target = 10, tol = c(5, 2), capwidth = 1.2)
truncsmart(x, target = 20, tol = c(5, 2))
truncsmart(x, target = 20, tol = c(10,10), capwidth = 2)
truncsmart(x, target = 20, tol = c(10,10), capwidth = 3)
truncsmart(x, target = 20, tol = c(10,10), capwidth = 4)
truncsmart(x, target = 20, tol = c(10,10), capwidth = 6)

updatePackages Update packages, spot new dependencies, and install them

Description

Addresses the problem that updates for previously installed R packages may insert new depen-
dencies. R’s update.packages does not trigger the installation of packages that are added as new
requirements in existing packages.

Usage

updatePackages(
ask = FALSE,
checkBuilt = TRUE,
dependencies = c("Depends", "Imports", "LinkingTo"),
libnew = "/usr/share/R/library/",
repos = options("repos"),
...

)

Arguments

ask If TRUE, asks user to select packages to update

checkBuilt If TRUE, packages built under earlier versions of R are to be considered ’old’

dependencies A vector specifying which type of dependencies need to be taken into account.
We default to c("Depends", "Imports", "LinkingTo").

libnew The R library folder into which the new packages must be installed. Defaults to
"/usr/share/R/library", which is where EL7 likes those things. To install pack-
ages in personal user directory, put libnew = NULL.

repos A vector of repositories on which to search for packages. Same definition as in
R’s install.packages or install.packages.

... additional arguments passed to update.packages and install.packages
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Details

This function checks for existence of updates, ascertains whether those packages impose new re-
quirements, and installs any new requirements. Then it conducts the update.

This function is valuable in system maintenance because sometimes existing packages adopt new
requirements and the update.packages function does not notice. Another possible case would be
that a user accidentally deletes some packages without realizing other packages depend on them.

If this is run as the root/administrator privileged, then base R packages may be updated, but if user is
not root/administrator, there will be a warning that packages were not updated because permissions
were lacking. For example

"Warning: package ’boot’ in library ’/usr/lib/R/library’ will not be updated.

This warning does not interfere with rest of purpose of this function, since the new dependencies can
be installed in a place where the user has privileges, either by specifying libnew as a full directory
name or by setting it to NULL, which puts new packages in $R_LIBS_USER

Value

A vector of new packages being installed

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

## Not run:
myrepos <- c("http://rweb.crmda.ku.edu/cran",

"http://www.bioconductor.org/packages/3.3/bioc")
updatePackages(repos = myrepos)
## libnew defaults to "/usr/share/R/library". Specify NULL
## so that new packages will go to user's directory
updatePackages(libnew = NULL)

## End(Not run)

varlabTemplate Create Variable Label Template

Description

Receive a key, create a varlab object, with columns name_old name_new, and varlab.

Usage

varlabTemplate(obj, varlab = TRUE)
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Arguments

obj A variable key

varlab Default NULL, function will start from clean slate, a set of column labels that
match name_new. User can specify values by providing a named vector of labels,
e.g., c("x1" = "happiness", "x2" = "wealth"), where the names are values
to be matched against "name_new" in key.

Details

If not specified, a matrix is created with empty variable labels.

Value

Character matrix with columns name_new and varlab.

Author(s)

Paul Johnson

Examples

mydf.path <- system.file("extdata", "mydf.csv", package = "kutils")
mydf <- read.csv(mydf.path, stringsAsFactors=FALSE)
mydf.keywide1 <- keyTemplate(mydf, long = FALSE, sort = FALSE,

varlab = TRUE)
attr(mydf.keywide1, "varlab")
mydf.keywide2 <- keyTemplate(mydf, long = FALSE, sort = FALSE,

varlab = c("x3" = "fun"))
attr(mydf.keywide2, "varlab")
attr(mydf.keywide2, "varlab") <- varlabTemplate(mydf.keywide2,

varlab = c("x5" = "wealth", "x10" = "happy"))
attr(mydf.keywide2, "varlab")
attr(mydf.keywide2, "varlab") <- varlabTemplate(mydf.keywide2,

varlab = TRUE)
attr(mydf.keywide2, "varlab")
## Target we are trying to match:
mydf.keylong <- keyTemplate(mydf, long = TRUE, sort = FALSE, varlab = TRUE)
attr(mydf.keylong, "varlab")
attr(mydf.keylong, "varlab") <- NULL
varlabTemplate(mydf.keylong)
attr(mydf.keylong, "varlab") <- varlabTemplate(mydf.keylong,

varlab = c("x3" = "wealth", "x10" = "happy"))
attr(mydf.keylong, "varlab")
attr(mydf.keylong, "varlab") <- varlabTemplate(mydf.keylong, varlab = TRUE)
attr(mydf.keylong, "varlab")
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wide2long Convert a key object from wide to long format

Description

This is not flexible, assumes columns are named in our canonical style, which means the columns
are named c("name_old", "name_new", "class_old", "class_new", "value_old", "value_new").

Usage

wide2long(
key,
sep = c(character = "\\|", logical = "\\|", integer = "\\|", factor = "\\|",
ordered = "[\\|<]", numeric = "\\|")

)

Arguments

key A variable key in the wide format

sep Default separator is the pipe, "\|" for most variables, while ordered accepts pipe
or less than, "\|<". If the key did not follow those customs, other sep values may
be specified for each variable class.

Value

A long format variable key

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

mydf.path <- system.file("extdata", "mydf.csv", package = "kutils")
mydf <- read.csv(mydf.path, stringsAsFactors=FALSE)
## Target we are trying to match:
mydf.keylong <- keyTemplate(mydf, long = TRUE, sort = FALSE)

mydf.key <- keyTemplate(mydf)
mydf.keywide2long <- wide2long(mydf.key)

## rownames not meaningful in long key, so remove in both versions
row.names(mydf.keywide2long) <- NULL
row.names(mydf.keylong) <- NULL
all.equal(mydf.keylong, mydf.keywide2long)
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writeCSV Write CSV files with quotes same as MS Excel 2013 or newer

Description

R’s write.csv inserts quotes around all elements in a character vector (if quote = TRUE). In contrast,
MS Excel CSV export no longer inserts quotation marks on all elements in character variables,
except when the cells include commas or quotation marks. This function generates CSV files that
are, so far as we know, exactly the same "quoted style" as MS Excel CSV export files.

Usage

writeCSV(x, file, row.names = FALSE)

Arguments

x a data frame

file character string for file name

row.names Default FALSE for row.names

Details

This works by manually inserting quotation marks where necessary and turning FALSE R’s own
method to insert quotation marks.

Value

the return from write.table, using revised quotes

Author(s)

Paul Johnson

Examples

set.seed(234)
x1 <- data.frame(x1 = c("a", "b,c", "b", "The \"Washington, DC\""),

x2 = rnorm(4), stringsAsFactors = FALSE)
x1
fn <- tempfile(pattern = "testcsv", fileext = ".csv")
writeCSV(x1, file = fn)
readLines(fn)
x2 <- read.table(fn, sep = ",", header = TRUE, stringsAsFactors = FALSE)
all.equal(x1,x2)
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zapspace Convert leading or trailing white space and tab characters to nothing.

Description

This eliminates any characters matched by the regular expression ‘\s‘ if they appear at the beginning
of a string or at its end. It does not alter spaces in the interior of a string. This was created when I
was not aware of R’s trimws and the purpose is the same. On our TODO list, we intend to eliminate
this function and replace its use with trimws

Usage

zapspace(x)

Arguments

x A character vector

Value

If x is a character vector, return is a character vector with leading and trailing white space values
removed. If x is not a character vector, an unaltered x is returned.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

x <- c("", " ", " ", "\t", "\t some", "some\t", " space first")
zapspace(x)
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