
Package: rockchalk (via r-universe)
August 26, 2024

Type Package

Title Regression Estimation and Presentation

Version 1.8.157

Date 2022-07-25

Maintainer Paul E. Johnson <pauljohn@ku.edu>

Description A collection of functions for interpretation and
presentation of regression analysis. These functions are used
to produce the statistics lectures in
<https://pj.freefaculty.org/guides/>. Includes regression
diagnostics, regression tables, and plots of interactions and
``moderator'' variables. The emphasis is on ``mean-centered'' and
``residual-centered'' predictors. The vignette 'rockchalk' offers
a fairly comprehensive overview. The vignette 'Rstyle' has
advice about coding in R. The package title 'rockchalk' refers
to our school motto, 'Rock Chalk Jayhawk, Go K.U.'.

License GPL (>= 3.0)

LazyLoad yes

Depends R (>= 2.10)

Imports grDevices, methods, lme4, carData, MASS, kutils

Suggests tables, Hmisc, car, mvtnorm, scatterplot3d, HH

Encoding UTF-8

RoxygenNote 7.2.0

NeedsCompilation no

Author Paul E. Johnson [aut, cre], Gabor Grothendieck [ctb], Dimitri
Papadopoulos OrfanosGabor [ctb]

Date/Publication 2022-08-06 17:00:06 UTC

Repository https://pauljohn32.r-universe.dev

RemoteUrl https://github.com/cran/rockchalk

RemoteRef HEAD

RemoteSha b5ee84d33158b428b2fe423ac99aa3609ad09e2e

1

https://pj.freefaculty.org/guides/

2 Contents

Contents
rockchalk-package . 3
addLines . 4
centerNumerics . 6
centralValues . 7
cheating . 8
checkIntFormat . 9
checkPosDef . 10
combineLevels . 10
cutByQuantile . 11
cutBySD . 12
cutByTable . 13
cutFancy . 13
descriptiveTable . 15
dir.create.unique . 17
drawnorm . 18
focalVals . 19
formatSummarizedFactors . 20
formatSummarizedNumerics . 21
genCorrelatedData . 22
genCorrelatedData2 . 23
genCorrelatedData3 . 26
genX . 30
getAuxRsq . 32
getDeltaRsquare . 33
getFocal . 34
getPartialCor . 35
getVIF . 36
gmc . 37
kurtosis . 38
lazyCor . 40
lazyCov . 40
lmAuxiliary . 41
magRange . 42
makeSymmetric . 43
makeVec . 44
mcDiagnose . 44
mcGraph1 . 45
meanCenter . 48
model.data . 52
model.data.default . 53
mvrnorm . 56
newdata . 58
outreg . 65
outreg2HTML . 71
padW0 . 72
pctable . 73

rockchalk-package 3

perspEmpty . 76
plot.testSlopes . 77
plotCurves . 78
plotFancy . 83
plotFancyCategories . 85
plotPlane . 86
plotSeq . 91
plotSlopes . 93
predictCI . 99
predictOMatic . 100
print.pctable . 107
print.summarize . 108
print.summary.pctable . 108
rbindFill . 109
religioncrime . 110
removeNULL . 111
residualCenter . 112
se.bars . 115
skewness . 116
standardize . 117
summarize . 118
summarizeFactors . 121
summarizeNumerics . 123
summary.factor . 124
summary.pctable . 125
testSlopes . 125
vech2Corr . 127
vech2mat . 128
waldt . 129

Index 131

rockchalk-package rockchalk: regression functions

Description

Includes an ever-growing collection of functions that assist in the presentation of regression mod-
els. The initial function was outreg, which produces LaTeX tables that summarize one or many
fitted regression models. It also offers plotting conveniences like plotPlane and plotSlopes,
which illustrate some of the variables from a fitted regression model. For a detailed check on multi-
collinearity, see mcDiagnose. The user should be aware of this fact: Not all of these functions lead
to models or types of analysis that we endorese. Rather, they all lead to analysis that is endorsed
by some scholars, and we feel it is important to facilitate the comparison of competing methods.
For example, the function standardize will calculate standardized regression coefficients for all
predictors in a regression model’s design matrix in order to replicate results from other statistical
frameworks, no matter how unwise the use of such coefficients might be. The function meanCenter
will allow the user to more selectively choose variables for centering (and possibly standardization)

4 addLines

before they are entered into the design matrix. Because of the importance of interaction variables in
regression analysis, the residualCenter and meanCenter functions are offered. While mean cen-
tering does not actually help with multicollinearity of interactive terms, many scholars have argued
that it does. The meanCenter function can be compared with the "residual centering" of interaction
terms.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

References

http://pj.freefaculty.org/R

addLines Superimpose regression lines on a plotted plane

Description

The examples will demonstrate the intended usage.

Usage

addLines(to = NULL, from = NULL, col, lwd = 2, lty = 1)

Arguments

to a 3d plot object produced by plotPlane

from output from a plotSlopes or plotCurves function (class="rockchalk")

col color of plotted lines (default: "red")

lwd line width of added lines (default: 2)

lty line type of added lines (default: 1)

Details

From an educational stand point, the objective is to assist with the student’s conceptualization of
the two and three dimensional regression relationships.

Value

NULL, nothing, nicht, nada.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

addLines 5

Examples

##library(rockchalk)

set.seed(12345)

dfadd <- genCorrelatedData2(100, means = c(0,0,0,0), sds = 1, rho = 0,
beta = c(0.03, 0.01, 0.1, 0.4, -0.1), stde = 2)

dfadd$xcat1 <- gl(2,50, labels=c("M","F"))

dfadd$xcat2 <- cut(rnorm(100), breaks=c(-Inf, 0, 0.4, 0.9, 1, Inf),
labels=c("R", "M", "D", "P", "G"))

dfadd$y2 <- 0.03 + 0.1*dfadd$x1 + 0.1*dfadd$x2 +
0.25*dfadd$x1*dfadd$x2 + 0.4*dfadd$x3 - 0.1*dfadd$x4 +
0.2 * as.numeric(dfadd$xcat1) +
contrasts(dfadd$xcat2)[as.numeric(dfadd$xcat2),] %*% c(-0.1, 0.1, 0.2, 0) +
1 * rnorm(100)

summarize(dfadd)

linear ordinary regression
m1 <- lm(y ~ x1 + x2 + x3 + x4, data = dfadd)
summary(m1)

mcDiagnose(m1)

These will be parallel lines

plotSlopes(m1, plotx = "x1", modx = "x2", modxVals = "std.dev.",
n = 5, main = "A plotSlopes result with \"std.dev.\" values of modx")

m1ps <- plotSlopes(m1, plotx = "x1", modx = "x2", modxVals = c(-2,0,2))

m1pp <- plotPlane(m1, plotx1 = "x1", plotx2 = "x2",
ticktype = "detailed", npp = 10)

addLines(from = m1ps, to = m1pp, lty = 1, lwd = 2)

m1pp <- plotPlane(m1, plotx1 = "x1", plotx2 = "x2", ticktype = "detailed",
npp = 10)

addLines(from = m1ps, to = m1pp, lty = 2, lwd = 5, col = "green")

Other approach would wrap same into the linesFrom argument in plotPlane

plotPlane(m1, plotx1 = "x1", plotx2 = "x2", ticktype = "detailed",
npp = 10, linesFrom = m1ps)

Need to think more on whether dotted lines from ps object should
be converted to solid lines in plotPlane.

6 centerNumerics

centerNumerics Find numeric columns, center them, re-name them, and join them with
the original data.

Description

The meanCentered regression function requires centered-inputs when calculations are predicted.
For comparison with ordinary regression, it is convenient to have both centered and the original data
side-by-side. This function handles that. If the input data has columns c("x1","x2","x3"), then the
centered result will have columns c("x1","x2","x3","x1c","x2c","x3c"), where "c" indicates "mean-
centered". If standardize=TRUE, then the result will have columns c("x1","x2","x3","x1cs","x2cs","x3cs"),
where "cs" indicate "centered and scaled".

Usage

centerNumerics(data, center, standardize = FALSE)

Arguments

data Required. data frame or matrix.

center Optional. If nc is NOT supplied, then all numeric columns in data will be cen-
tered (possiblly scaled). Can be specified in 2 formats. 1) Vector of column
names that are to be centered, 2) Vector named elements giving values of means
to be used in centering. Values must be named, as in c("x1" = 17, "x2" = 44).
(possibly scaled).

standardize Default FALSE. If TRUE, the variables are first mean-centered, and then divided
by their standard deviations (scaled). User can supply a named vector of scale
values by which to divide each variable (otherwise sd is used). Vector must have
same names and length as center argument. Variables can be entered in any
order (will be resorted inside function).

Value

A data frame with 1) All original columns 2) additional columns with centered/scaled data, variables
renamed "c" or "cs" to indicate the data is centered or centered and scaled. Attributes "centers" and
"scales" are created for "record keeping" on centering and scaling values.

Author(s)

<pauljohn@ku.edu>

Examples

set.seed(12345)
dat <- data.frame(x1=rnorm(100, m = 50), x2 = rnorm(100, m = 50),

x3 = rnorm(100, m = 50), y = rnorm(100),
x4 = gl(2, 50, labels = c("Male","Female")))

centralValues 7

datc1 <- centerNumerics(dat)
head(datc1)
summarize(datc1)
datc2 <- centerNumerics(dat, center=c("x1", "x2"))
head(datc2)
summarize(datc2)
attributes(datc2)
datc3 <- centerNumerics(dat, center = c("x1" = 30, "x2" = 40))
head(datc3)
summarize(datc3)
attributes(datc3)
datc4 <- centerNumerics(dat, center=c("x1", "x2"), standardize = TRUE)
head(datc3)
summarize(datc4)
attributes(datc4)
datc5 <- centerNumerics(dat, center=c("x1"=30, "x2"=40),
standardize = c("x2" = 5, "x1" = 7))
head(datc5)
summarize(datc5)
attributes(datc5)

centralValues Central Tendency estimates for variables

Description

This is needed for the creation of summaries and predicted values of regression models. It takes a
data frame and returns a new data frame with one row in which the mean or mode of the columns
is reported.

Usage

centralValues(x)

Arguments

x a data frame

Value

a data frame with the same variables and one row, the summary indicators.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

myDat <- data.frame(x=rnorm(100), y=rpois(100,l=4), z = cut(rnorm(100), c(-10,-1,0,10)))
centralValues(myDat)

8 cheating

cheating Cheating and Looting in Japanese Electoral Politics

Description

Extracted from the "cheating-replication.dta" data file with permission by the authors, Benjamin
Nyblade and Steven Reed. The Stata data file provided by the authors included many constructed
variables that have been omitted. Within R, these can be easily re-contructed by users.

Usage

data(cheating)

Format

data.frame: 16623 obs. on 27 variables

Details

Special thanks to NyBlade and Reed for permission to repackage this data. Also special thanks to
them for creating an especially transparent variable naming scheme.

The data set includes many columns for variables that can easily be re-constructed from the columns
that are provided here. While Stata users might need to manually create ’dummy variables’ and
interactions, R users generally do not do that manually.

These variables from the original data set were omitted:

Dummy variables for the year variable: c("yrd1", "yrd2", ..., "yrd17", "yrd18")

Dummy variables for the ku variable: c("ku1", "ku2", ..., "ku141", "ku142")

Constructed product variables: c("actualratiosq", "viabsq", "viab_candcamp_divm", "viab_candothercamp_divm",
"viabsq_candcamp_divm", "viabsq_candothercamp_divm", "absviab_candcamp", "absviab_candothercamp",
"absviab_candcamp_divm", "absviab_candothercamp_divm", "viabsq_candcamp", "viabsq_candothercamp",
"viab_candcamp", "viab_candothercamp", "candothercamp_divm", "candcamp_divm", "candcamp-
minusm", "candothercampminusm", "predratiosq", "absviab")

Mean centered variables: constr2 <- c("viab_candcampminusm", "viab_candothercampminusm",
"viabsq_candothercampminusm", "viabsq_candcampminusm")

In the end, we are left with these variables:

[1] "ku" [2] "prefecture" [3] "dist" [4] "year" [5] "yr" [6] "cdnr" [7] "jiban" [8] "cheating" [9]
"looting" [10] "actualratio" [11] "viab" [12] "inc" [13] "cons" [14] "ur" [15] "newcand" [16] "jwins"
[17] "cons_cwins" [18] "oth_cwins" [19] "camp" [20] "fleader" [21] "incablast" [22] "predratio"
[23] "m" [24] "candcamp" [25] "candothercamp" [26] "kunocheat" [27] "kunoloot"

Author(s)

Paul E. Johnson <pauljohn@ku.edu>, on behalf of Benjamin Nyblade and Steven Reed

checkIntFormat 9

Source

https://bnyblade.com/research/publications/.

References

Benjamin Nyblade and Steven Reed, "Who Cheats? Who Loots? Political Competition and Cor-
ruption in Japan, 1947-1993." American Journal of Political Science 52(4): 926-41. October 2008.

Examples

require(rockchalk)
data(cheating)

table1model2 <- glm(cheating ~ viab + I(viab^2) + inc + cons + ur
+ newcand + jwins + cons_cwins + oth_cwins, family = binomial(link
= "logit"), data = cheating)

predictOMatic(table1model2)

predictOMatic(table1model2, interval = "confidence")

The publication used "rare events logistic", which I'm not bothering
with here because I don't want to invoke additional imported packages.
But the ordinary logit results are proof of concept.

checkIntFormat A way of checking if a string is a valid file name.

Description

A copy from R’s grDevices:::checkIntFormat because it is not exported there

Usage

checkIntFormat(s)

Arguments

s An integer

Value

logical: TRUE or FALSE

Author(s)

R Core Development Team

https://bnyblade.com/research/publications/

10 combineLevels

checkPosDef Check a matrix for positive definitness

Description

Uses eigen to check positive definiteness. Follows example used in MASS package by W. N. Venables
and Brian D. Ripley

Usage

checkPosDef(X, tol = 1e-06)

Arguments

X A matrix
tol Tolerance (closeness to 0 required to declare failure)

Value

TRUE or FALSE

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

combineLevels recode a factor by "combining" levels

Description

This makes it easy to put levels together and create a new factor variable. If a factor variable is
currently coded with levels c("Male","Female","Man", "M"), and the user needs to combine the
redundant levels for males, this is the function to use! This is a surprisingly difficult problem in R.

Usage

combineLevels(fac, levs, newLabel = "combinedLevels")

Arguments

fac An R factor variable, either ordered or not.
levs The levels to be combined. Users may specify either a numerical vector of

level values, such as c(1,2,3), to combine the first three elements of level(fac),
or they may specify level names. This can be done as a character vector of
correctly spelled factor values, such as c("Yes","Maybe","Always") or it may
be provided as a subset of the output from levels, such as levels(fac)[1:3].

newLabel A character string that represents the label of the new level to be created when
levs values are combined.

cutByQuantile 11

Details

If the factor is an ordinal factor, then levels may be combined only if they are adjacent. A factor
with levels c("Lo","Med","Hi","Extreme") allows us to combine responses "Lo" and "Med", while
it will NOT allow us to combine "Lo" with "Hi".

A non-ordered factor can be reorganized to combine any values, no matter what positions they
occupy in the levels vector.

Value

A new factor variable, with unused levels removed.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

x <- c("M","A","B","C","A","B","A","M")
x <- factor(x)
levels(x)
x2a <- combineLevels(x, levs = c("M","A"), newLabel = "M_or_A")
addmargins(table(x2a, x, exclude=NULL))
x2b <- combineLevels(x, c(1,4), "M_or_A")
addmargins(table(x2b, x, exclude=NULL))
x3 <- combineLevels(x, levs = c("M","A","C"), newLabel = "MAC")
addmargins(table(x3, x, exclude=NULL))
Now an ordinal factor
z <- c("M","A","B","C","A","B","A","M")
z <- ordered(z)
levels(z)
table(z, exclude=NULL)
z2a <- combineLevels(z, levs = c(1,2), "Good")
addmargins(table(z2a, z, exclude = NULL))
z2b <- combineLevels(z, levs = c("A","B"), "AorB")
addmargins(table(z2b, z, exclude = NULL))

cutByQuantile Calculates the "center" quantiles, always including the median, when
n is odd.

Description

If the numeric variable has fewer than 6 unique observed values, this will send the data to cutByTable.
The default return will find dividing points at three quantiles: c(0.25, 0.50, 0.75) If n=4, the dividing
points will be c(0.20, 0.40, 0.60, 0.80) If n=5, c(0.0, 0.25, 0.50, 0.75, 1.0) Larger n that are odd will
include 0.5 and evenly spaced points out to proportions 0 and 1.0. Larger n that is even will return
evenly spaced points calculated by R’s pretty function.

12 cutBySD

Usage

cutByQuantile(x, n = 3)

Arguments

x A numeric vector.

n The number of quantile points. See details.

Value

A vector

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

cutBySD Returns center values of x, the mean, mean-std.dev, mean+std.dev

Description

If the numeric variable has fewer than 6 unique observed values, this will send the data to cut-
ByTable.

Usage

cutBySD(x, n = 3)

Arguments

x A numeric variable

n Should be an odd number 1, 3, 5, or 7. If 2 < n < 5, values that divide the data at
c(m-sd, m, m+sd) are returned. If n > 4, the returned values are c(m-2sd, m-sd,
m, m+sd, m+2sd).

Value

A named vector

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

x <- rnorm(100, m = 100, s = 20)
cutBySD (x, n = 3)
cutBySD (x, n = 5)

cutByTable 13

cutByTable Select most frequently occurring values from numeric or categorical
variables.

Description

The "n" most frequently occurring values are returned, sorted by frequency of occurrence (in de-
scending order). The names attribute includes information about the percentage of cases that have
the indicated values.

Usage

cutByTable(x, n = 5, pct = TRUE)

Arguments

x A numeric or character variable

n The maximum number of values that may be returned.

pct Default = TRUE. Include percentage of responses within each category

Details

This is used by plotSlopes, plotCurves, and other "newdata" making functions.

Value

A named vector.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

cutFancy Create an ordinal variable by grouping numeric data input.

Description

This is a convenience function for usage of R’s cut function. Users can specify cutpoints or category
labels or desired proportions of groups in various ways. In that way, it has a more flexible interface
than cut. It also tries to notice and correct some common user errors, such as omitting the outer
boundaries from the probs argument. The returned values are labeled by their midpoints, rather than
cut’s usual boundaries.

Usage

cutFancy(y, cutpoints = "quantile", probs, categories)

14 cutFancy

Arguments

y The input data from which the categorized variable will be created.

cutpoints Optional paramter, a vector of thresholds at which to cut the data. If it is not
supplied, the default value cutpoints="quantile" will take effect. Users can
supplement with probs and/or categories as shown in examples.

probs This is an optional parameter, relevant only when the R function quantile func-
tion is used to calculate cutpoints. The length should be number of desired
categories PLUS ONE, as in c(0, .3, .6, 1). That will create categories that
represent 1) less than .3, between .3 and .6, and above .6. A common user error
is to specify only the internal divider values, such as probs = c(.3,.6). To an-
ticipate and correct that error, this function will insert the lower limit of 0 and
the upper limit of 1 if they are not already present in probs.

categories Can be a number to designate the number of sub-groups created, or it can be a
vector of names used. If cutpoints and probs are not specified, the parameter
categories should be an integer to specify how many data groups to create.It is
required if cutpoints="quantile" and probs is not specified. Can also be a vector
of names to be used for the categories that are created. If category names are not
provided, the names for the ordinal variable will be the midpoint of the numeric
range from which they are constructed.

Details

The dividing points, thought of as "thresholds" or "cutpoints", can be specified in several ways.
cutFancy will automatically create equally-sized sets of observations for a given number of cate-
gories if neither probs nor cutpoints is specified. The bare minimum input needed is categories=5,
for example, to ask for 5 equally sized groups. More user control can be had by specifying either
cutpoints or probs. If cutpoints is not specified at all, or if cutpoints="quantile", then probs
can be used to specify the proportions of the data points that are to fall within each range. On the
other hand, one can specify cutpoints = "quantile" and then probs will be used to specify the
proportions of the data points that are to fall within each range.

If categories is not specified, the category names will be created. Names for ordinal categories
will be the numerical midpoints for the outcomes. Perhaps this will deviate from your expectation,
which might be ordinal categories name "0", "1", "2", and so forth. The numerically labeled values
we provide can be used in various ways during the analysis process. Read "?factor" to learn ways
to convert the ordinal output to other formats. Examples include various ways of converting the
ordinal output to numeric.

The categories parameter works together with cutpoints. cutpoints allows a character string
"quantile". If cutpoints is not specified, or if the user specifies a character string cutpoints="quantile",
then the probs would be used to determine the cutpoints. However, if probs is not specified, then
the categories argument can be used. If cutpoints="quantile", then

• if categories is one integer, then it is interpreted as the number of "equally sized" categories
to be created, or

• categories can be a vector of names. The length of the vector is used to determine the
number of categories, and the values are put to use as factor labels.

descriptiveTable 15

Value

an ordinal vector with attributes "cutpoints" and "props" (proportions)

Examples

set.seed(234234)
y <- rnorm(1000, m = 35, sd = 14)
yord <- cutFancy(y, cutpoints = c(30, 40, 50))
table(yord)
attr(yord, "props")
attr(yord, "cutpoints")
yord <- cutFancy(y, categories = 4L)
table(yord, exclude = NULL)
attr(yord, "props")
attr(yord, "cutpoints")
yord <- cutFancy(y, probs = c(0, .1, .3, .7, .9, 1.0),

categories = c("A", "B", "C", "D", "E"))
table(yord, exclude = NULL)
attr(yord, "props")
attr(yord, "cutpoints")
yord <- cutFancy(y, probs = c(0, .1, .3, .7, .9, 1.0))
table(yord, exclude = NULL)
attr(yord, "props")
attr(yord, "cutpoints")
yasinteger <- as.integer(yord)
table(yasinteger, yord)
yasnumeric <- as.numeric(levels(yord))[yord]
table(yasnumeric, yord)
barplot(attr(yord, "props"))
hist(yasnumeric)
X1a <-

genCorrelatedData3("y ~ 1.1 + 2.1 * x1 + 3 * x2 + 3.5 * x3 + 1.1 * x1:x3",
N = 10000, means = c(x1 = 1, x2 = -1, x3 = 3),
sds = 1, rho = 0.4)

Create cutpoints from quantiles
probs <- c(.3, .6)
X1a$yord <- cutFancy(X1a$y, probs = probs)
attributes(X1a$yord)
table(X1a$yord, exclude = NULL)

descriptiveTable Summary stats table-maker for regression users

Description

rockchalk::summarize does the numerical calculations

16 descriptiveTable

Usage

descriptiveTable(
object,
stats = c("mean", "sd", "min", "max"),
digits = 4,
probs = c(0, 0.5, 1),
varLabels,
...

)

Arguments

object A fitted regression or an R data.frame, or any other object type that does not fail
in codemodel.frame(object).

stats Default is a vector c("mean", "sd", "min", "max"). Other stats reported by
rockchalk::summarize should work fine as well

digits 2 decimal points is default

probs Probability cut points to be used in the calculation of summaries of numeric
variables. Default is c(0, 0.5, 1), meaning min, median, max.

varLabels A named vector of variables labels, as in outreg function. Format is c("oldname"="newlabel").

... Other arguments passed to rockchalk::summarizeNumerics and summarizeFac-
tors.

Details

This is, roughly speaking, doing the right thing, but not in a clever way. For the categorical variables,
the only summary is proportions.

Value

a character matrix

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

dat <- genCorrelatedData2(1000, means=c(10, 10, 10), sds = 3,
stde = 3, beta = c(1, 1, -1, 0.5))

dat$xcat1 <- factor(sample(c("a", "b", "c", "d"), 1000, replace=TRUE))
dat$xcat2 <- factor(sample(c("M", "F"), 1000, replace=TRUE), levels = c("M", "F"),
labels = c("Male", "Female"))
dat$y <- dat$y + contrasts(dat$xcat1)[dat$xcat1,] %*% c(0.1, 0.2, 0.3)
m4 <- lm(y ~ x1 + x2 + x3 + xcat1 + xcat2, dat)
m4.desc <- descriptiveTable(m4)
m4.desc
Following may cause scientific notation, want to avoid.

dir.create.unique 17

dat <- genCorrelatedData2(1000, means=c(10, 100, 400),
sds = c(3, 10, 20), stde = 3, beta = c(1, 1, -1, 0.5))

m5 <- lm(y ~ x1 + x2 + x3, dat)
m5.desc <- descriptiveTable(m5, digits = 4)
m5.desc

dir.create.unique Create a uniquely named directory. Appends number & optionally
date to directory name.

Description

Checks if the requested directory exists. If so, will create new directory name. My favorite method
is to have the target directory with a date-based subdirectory, but set usedate as FALSE if you don’t
like that. Arguments showWarnings, recursive, and mode are passed along to R’s dir.create, which
does the actual work here.

Usage

dir.create.unique(
path,
usedate = TRUE,
showWarnings = TRUE,
recursive = TRUE,
mode = "0777"

)

Arguments

path A character string for the base name of the directory.
usedate TRUE or FALSE: Insert YYYYMMDD information?
showWarnings default TRUE. Show warnings? Will be passed on to dir.create
recursive default TRUE. Will be passed on to dir.create
mode Default permissions on unix-alike systems. Will be passed on to dir.create

Details

Default response to dir = "../output/" fixes the directory name like this, "../output/20151118-1/"
because usedate is assumed TRUE. If usedate = FALSE, then output names will be like "../output-
1/", "../output-2/", and so forth.

Value

a character string with the directory name

Author(s)

Paul E Johnson <pauljohn@ku.edu>

18 drawnorm

drawnorm draw a normal distribution with beautiful illustrations

Description

This was developed for the R Working Example collection in my website, pj.freefaculty.org/R/WorkingExamples

Usage

drawnorm(
mu = 0,
sigma = 1,
xlab = "A Normally Distributed Variable",
ylab = "Probability Density",
main,
ps = par("ps"),
...

)

Arguments

mu The mu parameter

sigma The sigma parameter

xlab Label for x axis

ylab Label for Y axis

main Title for plot. OK to ignore this, we’ll make a nice one for you

ps pointsize of text

... arguments passed to par

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

drawnorm(mu = 10, sigma = 20)
drawnorm(mu= 0, sigma = 1)
drawnorm(mu = 102, sigma = 313)
drawnorm(mu = 0, sigma = 1, main = "A Standard Normal Distribution, N(0,1)",

xlab = "X", ylab = "Density", ps = 7)
drawnorm(mu = 0, sigma = 1, ylab = "Density", ps = 14)

focalVals 19

focalVals Create a focal value vector.

Description

This selects some values of a variable and creates a new "focal vector" from them. Can use one
"divider" algorithm, to be selected by name.

Usage

focalVals(x, divider = "quantile", n = 3)

Arguments

x The input variable may be numeric or a factor.

divider Either a quoted string name of an algorithm or a function. Default = "quantile"
for numeric variables, "table" for factors. Other valid values: "seq" for an evenly
spaced sequence from minimum to maximum, "std.dev." for a sequence that has
the mean at the center and values on either side that are proportional to the
standard deviation.

n Desired number of focal values.

Details

This is a "wrapper" (or convenience) function that re-directs work to other functions. The func-
tions that do the work to select the focal values for types ("table", "quantile", "std.dev.", "seq") are
(cutByTable(), cutByQuantile(), cutBySD(), and plotSeq())

The built-in R function pretty() works as of rockchalk 1.7.2. Any function that accepts an argu-
ment n will work, as long as it creates a vector of values.

Value

A named vector of focal values selected from a variable. The values of the names should be infor-
mative and useful for plotting or other diagnostic work.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

See Also

predictOMatic newdata

20 formatSummarizedFactors

formatSummarizedFactors

Prints out the contents of an object created by summarizeFactors in
the style of base::summary

Description

An object with class "summarizedFactors" is the input. Such an object should be created with the
function rockchalk::summarizeFactors. Each element in that list is then organized for printing in a
tabular summary. This should look almost like R’s own summary function, except for the additional
information that these factor summaries include.

Usage

formatSummarizedFactors(x, ...)

Arguments

x A summarizedFactors object produced by summarizeFactors

... optional arguments. Only value currently used is digits, which defaults to 2.

Value

A table of formatted output

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

See Also

summarize, summarizeFactors, formatSummarizedNumerics

Examples

dat <- data.frame(xcat1 = gl(10, 3), xcat2 = gl(5, 6))
summarizeFactors(dat, maxLevels = 8)
formatSummarizedFactors(summarizeFactors(dat))

formatSummarizedNumerics 21

formatSummarizedNumerics

Reformat numeric summarize output as one column per variable, sim-
ilar to R summary

Description

The summarizeNumeric function returns a data frame with the variable names on the rows and
summary statistics (mean, median, std. deviation) in the columns.This transposes and abbreviates
the information to look more like R summary.

Usage

formatSummarizedNumerics(x, ...)

Arguments

x numeric summaries from summarize function

... Other arguments, such as digits

Value

An R table object

Author(s)

Paul Johnson

Examples

set.seed(21234)
X <- matrix(rnorm(10000), ncol = 10, dimnames = list(NULL, paste0("xvar", 1:10)))
Xsum <- summarize(X)
Xsum$numerics
formatSummarizedNumerics(Xsum$numerics)
formatSummarizedNumerics(Xsum$numerics, digits = 5)
Xsum.fmt <- formatSummarizedNumerics(Xsum$numerics)
str(Xsum.fmt)

22 genCorrelatedData

genCorrelatedData Generates a data frame for regression analysis

Description

The output is a data frame (x1, x2, y) with user-specified correlation between x1 and x2. The y
(output) variable is created according to the equation

y = beta1 + beta2 ∗ x1 + beta3 ∗ x2 + beta4 ∗ x1 ∗ x2 + e.

The arguments determine the scales of the X matrix, the random error, and the slope coefficients.

Usage

genCorrelatedData(
N = 100,
means = c(50, 50),
sds = c(10, 10),
rho = 0,
stde = 1,
beta = c(0, 0.2, 0.2, 0)

)

Arguments

N Number of cases desired

means 2-vector of means for x1 and x2

sds 2-vector of standard deviations for x1 and x2

rho Correlation coefficient for x1 and x2

stde standard deviation of the error term in the data generating equation

beta beta vector of at most 4 coefficients for intercept, slopes, and interaction

Details

The vector (x1,x2) is drawn from a multivariate normal distribution in which the expected value
(argument means). The covariance matrix of X is built from the standard deviations (sds) and the
specified correlation between x1 and x2 (rho). It is also necessary to specify the standard deviation
of the error term (stde) and the coefficients of the regression equation (beta).

Examples

1000 observations of uncorrelated x1 and x2 with no
interaction between x1 and x2
dat <- genCorrelatedData(N=1000, rho=0, beta=c(1, 1.0, -1.1, 0.0))

mcGraph1(dat$x1, dat$x2, dat$y, theta=20, phi=8,
ticktype="detailed", nticks=10)

m1 <- lm(y ~ x1 + x2, data = dat)

genCorrelatedData2 23

plotPlane(m1, plotx1 = "x1", plotx2 = "x2")

genCorrelatedData2 Generates a data frame for regression analysis.

Description

Unlike genCorrelatedData, this new-and-improved function can generate a data frame with as
many predictors as the user requests along with an arbitrarily complicated regression formula. The
result will be a data frame with columns named (y, x1, x2, ..., xp).

Usage

genCorrelatedData2(
N = 100,
means = c(50, 50, 50),
sds = c(10, 10, 10),
rho = c(0, 0, 0),
stde = 100,
beta = c(0, 0.15, 0.1, -0.1),
intercept = FALSE,
verbose = TRUE

)

Arguments

N Number of cases desired

means P-vector of means for X. Implicitly sets the dimension of the predictor matrix as
N x P.

sds Values for standard deviations for columns of X. If less than P values are sup-
plied, they will be recycled.

rho Correlation coefficient for X. Several input formats are allowed (see lazyCor).
This can be a single number (common correlation among all variables), a full
matrix of correlations among all variables, or a vector that is interpreted as the
strictly lower triangle (a vech).

stde standard deviation of the error term in the data generating equation

beta beta vector of coefficients for intercept, slopes, and interaction terma. The first
P+1 values are the intercept and slope coefficients for the predictors. Additional
elements in beta are interpreted as coefficients for nonlinear and interaction co-
efficients. I have decided to treat these as a column (vech) that fills into a lower
triangular matrix. It is easy to see what’s going on if you run the examples.
There is also explanation in Details.

intercept Default FALSE. Should the predictors include an intercept?

verbose TRUE or FALSE. Should information about the data generation be reported to
the terminal?

24 genCorrelatedData2

Details

Arguments supplied must have enough information so that an N x P matrix of predictors can be
constructed. The matrix X is drawn from a multivariate normal distribution, the expected value
vector (mu vector) is given by the means and the var/covar matrix (Sigma) is built from user supplied
standard deviations sds and the correlations between the columns of X, given by rho. The user can
also set the standard deviation of the error term (stde) and the coefficients of the regression equation
(beta).

If called with no arguments, this creates a data frame with X ~ MVN(mu = c(50,50,50), Sigma =
diag(c(10,10,10))). y = X is N(m = 0, sd = 200). All of these details can be changed by altering the
arguments.

The y (output) variable is created according to the equation

y = b1 + b2 ∗ x1 + ...+ bk ∗ xk + b[k + 1] ∗ x1 ∗ ...interactions..+ e

For shorthand, I write b1 for beta[1], b2 for beta[2], and so forth.

The first P+1 arguments in the argument beta are the coefficients for the intercept and the columns
of the X matrix. Any additional elements in beta are the coefficients for nonlinear and interaction
terms.

Those additional values in the beta vector are completely optional. Without them, the true model
is a linear regression. However, one can incorporate the effect of squared terms (conceptualize that
as x1 * x1, for example) or interactions (x1 * x2) easily. This is easier to illustrate than describe.
Suppose there are 4 columns in X. Then a beta vector like beta = c(0, 1, 2, 3, 4, 5, 6, 7, 8) would
amount to asking for

y = 0 + 1x1 + 2x2 + 3x3 + 4x4 + 5x12 + 6x1x2 + 7x1x3 + 8x1x4 + error

If beta supplies more coefficients, they are interpeted as additional interactions.

When there are a many predictors and the beta vector is long, this can become confusing. I think
of this as a vech for the lower triangle of a coefficient matrix. In the example with 4 predictors,
beta[1:5] are used for the intercepts and slopes. The rest of the beta elements lay in like so:

X1 X2 X3 X4
X1 b6 . .
X2 b7 b10 .
X3 b8 b11 b13
X4 b9 b12 b14 b15

If the user only supplies b6 and b7, the rest are assumed to be 0.

To make this clear, the formula used to calculate y is printed to the console when genCorrelated-
Data2 is called.

genCorrelatedData2 25

Value

A data matrix that has columns c(y, x1, x2, ..., xP)

Examples

1000 observations of uncorrelated X with no interactions
set.seed(234234)
dat <- genCorrelatedData2(N = 10, rho = 0.0, beta = c(1, 2, 1, 1),

means = c(0,0,0), sds = c(1,1,1), stde = 0)
summarize(dat)
The perfect regression!
m1 <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m1)

dat <- genCorrelatedData2(N = 1000, rho = 0,
beta = c(1, 0.2, -3.3, 1.1), stde = 50)

m1 <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m1)
predictOMatic(m1)
plotCurves(m1, plotx = "x2")

interaction between x1 and x2
dat <- genCorrelatedData2(N = 1000, rho = 0.2,

beta = c(1, 1.0, -1.1, 0.1, 0.0, 0.16), stde = 1)
summarize(dat)
Fit wrong model? get "wrong" result
m2w <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m2w)
Include interaction
m2 <- lm(y ~ x1 * x2 + x3, data = dat)
summary(m2)

dat <- genCorrelatedData2(N = 1000, rho = 0.2,
beta = c(1, 1.0, -1.1, 0.1, 0.0, 0.16), stde = 100)

summarize(dat)
m2.2 <- lm(y ~ x1 * x2 + x3, data = dat)
summary(m2.2)

dat <- genCorrelatedData2(N = 1000, means = c(100, 200, 300, 100),
sds = 20, rho = c(0.2, 0.3, 0.1, 0, 0, 0),
beta = c(1, 1.0, -1.1, 0.1, 0.0, 0.16, 0, 0, 0.2, 0, 0, 1.1, 0, 0, 0.1),
stde = 200)

summarize(dat)
m2.3w <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m2)

m2.3 <- lm(y ~ x1 * x2 + x3, data = dat)
summary(m2.3)

predictOMatic(m2.3)
plotCurves(m2.3, plotx = "x1", modx = "x2", modxVals = "std.dev.", n = 5)

26 genCorrelatedData3

simReg <- lapply(1:100, function(x){
dat <- genCorrelatedData2(N = 1000, rho = c(0.2),

beta = c(1, 1.0, -1.1, 0.1, 0.0, 0.46), verbose = FALSE)
mymod <- lm (y ~ x1 * x2 + x3, data = dat)
summary(mymod)

})

x3est <- sapply(simReg, function(reg) {coef(reg)[4 ,1] })
summarize(x3est)
hist(x3est, breaks = 40, prob = TRUE,

xlab = "Estimated Coefficients for column x3")

r2est <- sapply(simReg, function(reg) {reg$r.square})
summarize(r2est)
hist(r2est, breaks = 40, prob = TRUE, xlab = "Estimates of R-square")

No interaction, collinearity
dat <- genCorrelatedData2(N = 1000, rho = c(0.1, 0.2, 0.7),

beta = c(1, 1.0, -1.1, 0.1), stde = 1)
m3 <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m3)

dat <- genCorrelatedData2(N=1000, rho=c(0.1, 0.2, 0.7),
beta = c(1, 1.0, -1.1, 0.1), stde = 200)

m3 <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m3)
mcDiagnose(m3)

dat <- genCorrelatedData2(N = 1000, rho = c(0.9, 0.5, 0.4),
beta = c(1, 1.0, -1.1, 0.1), stde = 200)

m3b <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m3b)
mcDiagnose(m3b)

genCorrelatedData3 Generate correlated data for simulations (third edition)

Description

This is a revision of genCorrelatedData2. The output is a data frame that has columns for the
predictors along with an error term, the linear predictor, and the observed value of the outcome
variable. The new features are in the user interface. It has a better way to specify beta coefficients.
It is also more flexible in the specification of the names of the predictor columns.

Usage

genCorrelatedData3(
formula,
N = 100,

genCorrelatedData3 27

means = c(x1 = 50, x2 = 50, x3 = 50),
sds = 10,
rho = 0,
stde = 1,
beta = c(0, 0.15, 0.1, -0.1),
intercept = FALSE,
col.names,
verbose = FALSE,
...,
distrib = rnorm

)

Arguments

formula a text variable, e.g., "y ~ 1 + 2*x1". Use ":" to create squared and interaction
terms, "y ~ 1 + 2*x1 + 1.1*x1:x1 + 0.2*x1:x2". Multi-way interactions are
allowed, eg "y ~ 1 + 2*x1 + .4*x2 + .1*x3 + 1.1*x1:x1 + 0.2*x1:x2:x3". Note
author can specify any order of interation.

N sample size

means averages of predictors, can include names c(x1 = 10, x2 = 20) that will be used
in the data.frame result.

sds standard deviations, 1 (common value for all variables) or as many elements as
in means.

rho correlations, can be 1 or a vech for a correlation matrix

stde The scale of the error term. If distrib=rnorm, stde is the standard deviation of
the error term. If the user changes the distribution, this is a scale parameter that
may not be equal to the standard deviation. For example, distrib=rlogist has
a scale parameter such that a value of stde implies the error’s standard deviation
will be stde ∗ pi/sqrt(3).

beta slope coefficients, use either this or formula, not both. It is easier (less er-
ror prone) to use named coefficients, but (for backwards compatability with
genCorrelatedData2) names are not required. If named, use "Intercept" for
the intercept coefficient, and use variable names that match the xmeans vector.
Un-named coefficients follow same rules as in genCorrelatedData2. The first
(1 + p) values are for the intercept and p main effects. With 3 predictors and no
squares or interactions, specify four betas corresponding to c(Intercept, x1,
x2, x3). The squared and interaction terms may follow. The largest possible
model would correspond to c(Intercept, x1, x2, x3, x1:x1,x1:x2, x1:x3,
x2:x2, x2:x3, x3:x3). Squares and interactions fill in a "lower triangle". The
unnamed beta vector can be terminated with the last non-zero coefficient, the
function will insert 0’s for the coefficients at the end of the vector.

intercept TRUE or FALSE. Should the output data set include a column of 1’s. If beta is
an unnamed vector, should the first element be treated as an intercept?

col.names Can override names in means vector

verbose TRUE for diagnostics

28 genCorrelatedData3

... extra arguments, ignored for now. We use that to ignore unrecognized parame-
ters.

distrib An R random data generating function. Default is rnorm. Also rlogis or any
other two-parameter location/scale distribution will work. Special configuration
allows rt. See details.

Details

The enhanced methods for authors to specify a data-generating process are as follows. Either way
will work and the choice between the methods is driven by the author’s convenience.

• 1. Use the formula argument as a quoted string: "1 + 2.2 * x1 + 2.3 * x2 + 3.3 * x3 + 1.9 *
x1:x2". The "*" represents multiplication of coefficient times variable, and the colon ":" has
same meaning but it is used for products of variables.

• 2. Use the beta argument with parameter names, beta = c("Intercept" = 1, x1 = 2.2, x2 =
2.3, x3 = 3.3, "x1:x2" = 1.9) where the names are the same as the names of the variables
in the formula. Names of the variables in the formula or the beta vector should be used also in
either the means parameter or the col.names parameter.

The error distribution can be specified. Default is normal, with draws provided by R’s rnorm. All
error models assume E[e] = 0 and the scale coefficient is the parameter stde. Thus, the default
setup’s error will be drawn from rnorm(N, 0, stde). Any two parameter "location" and "scale"
distribution should work as well, as long as the first coefficient is location (because we set that
as 0 in all cases) and the second argument is scale. For example, distrib=rlogis, will lead to
errors drawn from rlogis(N, 0, stde). Caution: in rlogis, the scale parameter is not the same as
standard deviation.

The only one parameter distribution currently supported is the T distribution. If user specifies
distrib=rt, then the stde is passed through to the parameter df. Note that if increasing the stde
parameter will cause the standard deviation of rt to get smaller. df=1 implies sd = 794.6; df=2
implies sd = 3.27; df=3 implies 1.7773.

Methods to specify error distributions in a more flexible way need to be considered.

Value

a data frame

Author(s)

Paul Johnson <pauljohn@ku.edu> and Gabor Grothendieck <ggrothendieck@gmail.com>

Examples

set.seed(123123)
note: x4 is an unused variable in formula
X1a <-

genCorrelatedData3("y ~ 1.1 + 2.1 * x1 + 3 * x2 + 3.5 * x3 + 1.1 * x1:x3",
N = 1000, means = c(x1 = 1, x2 = -1, x3 = 3, x4 = 1),
sds = 1, rho = 0.4, stde = 5)

genCorrelatedData3 29

lm1a <- lm(y ~ x1 + x2 + x3 + x1:x3, data = X1a)
note that normal errors have std.error. close to 5
summary(lm1a)
attr(X1a, "beta")
attr(X1a, "formula")
Demonstrate name beta vector method to provide named arguments
set.seed(123123)
X2 <- genCorrelatedData3(N = 1000, means = c(x1 = 1, x2 = -1, x3 = 3, x4 = 1),

sds = 1, rho = 0.4,
beta = c("Intercept" = 1.1, x1 = 2.1, x2 = 3,

x3 = 3.5, "x1:x3" = 1.1),
intercept = TRUE, stde = 5)

attr(X2, c("beta"))
attr(X2, c("formula"))
head(X2)
lm2 <- lm(y ~ x1 + x2 + x3 + x1:x3, data = X2)
summary(lm2)

Equivalent with unnamed beta vector. Must carefully count empty
spots, fill in 0's when coefficient is not present. This
method was in genCorrelated2. Order of coefficents is
c(intercept, x1, ..., xp, x1:x1, x1:x2, x1:xp, x2:x2, x2:x3, ...,)
filling in a lower triangle.
set.seed(123123)
X3 <- genCorrelatedData3(N = 1000, means = c(x1 = 1, x2 = -1, x3 = 3, x4 = 1),

sds = 1, rho = 0.4,
beta = c(1.1, 2.1, 3, 3.5, 0, 0, 0, 1.1),

intercept = TRUE, stde = 5)
attr(X3, c("beta"))
attr(X3, c("formula"))
head(X3)
lm3 <- lm(y ~ x1 + x2 + x3 + x1:x3, data = X3)
summary(lm3)

Same with more interesting variable names in the means vector
X3 <- genCorrelatedData3(N = 1000,

means = c(friend = 1, enemy = -1, ally = 3, neutral = 1),
sds = 1, rho = 0.4,
beta = c(1.1, 2.1, 3, 3.5, 0, 0, 0, 1.1),

intercept = TRUE, stde = 5)
head(X3)
attr(X3, c("beta"))

X3 <- genCorrelatedData3(N = 1000, means = c(x1 = 50, x2 = 50, x3 = 50),
sds = 10, rho = 0.4,
beta = c("Intercept" = .1, x1 = .01, x2 = .2, x3 = .5,

"x1:x3" = .1))
lm3 <- lm(y ~ x1 + x2 + x3 + x1:x3, data = X3)

Names via col.names argument: must match formula
X2 <- genCorrelatedData3("y ~ 1.1 + 2.1 * educ + 3 * hlth + 3 * ses + 1.1 * educ:ses",

30 genX

N = 100, means = c(50, 50, 50, 20),
sds = 10, rho = 0.4, col.names = c("educ", "hlth", "ses", "wght"))

str(X2)

X3 <- genCorrelatedData3("y ~ 1.1 + 2.1 * educ + 3 * hlth + 3 * ses + 1.1 * educ:ses",
N = 100, means = c(50, 50, 50, 20),
sds = 10, rho = 0.4, col.names = c("educ", "hlth", "ses", "wght"),
intercept = TRUE)

str(X3)

note the logistic errors have residual std.error approximately 5 * pi/sqrt(3)
X1b <-

genCorrelatedData3("y ~ 1.1 + 2.1 * x1 + 3 * x2 + 3.5 * x3 + 1.1 * x1:x3",
N = 1000, means = c(x1 = 1, x2 = -1, x3 = 3),
sds = 1, rho = 0.4, stde = 5, distrib = rlogis)

lm1b <- lm(y ~ x1 + x2 + x3 + x1:x3, data = X1b)
summary(lm1b)

t distribution is very sensitive for fractional df between 1 and 2 (recall
stde parameter is passed through to df in rt.
X1c <-

genCorrelatedData3("y ~ 1.1 + 2.1 * x1 + 3 * x2 + 3.5 * x3 + 1.1 * x1:x3",
N = 1000, means = c(x1 = 1, x2 = -1, x3 = 3),
sds = 1, rho = 0.4, stde = 1.2, distrib = rt)

lm1c <- lm(y ~ x1 + x2 + x3 + x1:x3, data = X1c)
summary(lm1c)

genX Generate correlated data (predictors) for one unit

Description

This is used to generate data for one unit. It is recently re-designed to serve as a building block in
a multi-level data simulation exercise. The new arguments "unit" and "idx" can be set as NULL to
remove the multi-level unit and row naming features. This function uses the rockchalk::mvrnorm
function, but introduces a convenience layer by allowing users to supply standard deviations and
the correlation matrix rather than the variance.

Usage

genX(
N,
means,
sds,
rho,
Sigma = NULL,
intercept = TRUE,
col.names = NULL,

genX 31

unit = NULL,
idx = FALSE

)

Arguments

N Number of cases desired

means A vector of means for p variables. It is optional to name them. This implicitly
sets the dimension of the predictor matrix as N x p. If no names are supplied, the
automatic variable names will be "x1", "x2", and so forth. If means is named,
such as c("myx1" = 7, "myx2" = 13, "myx3" = 44), those names will be come
column names in the output matrix.

sds Standard deviations for the variables. If less than p values are supplied, they will
be recycled.

rho Correlation coefficient for p variables. Several input formats are allowed (see
lazyCor). This can be a single number (common correlation among all vari-
ables), a full matrix of correlations among all variables, or a vector that is inter-
preted as the strictly lower triangle (a vech).

Sigma P x P variance/covariance matrix.

intercept Default = TRUE, do you want a first column filled with 1?

col.names Names supplied here will override column names supplied with the means pa-
rameter. If no names are supplied with means, or here, we will name variables
x1, x2, x3, ... xp, with Intercept at front of list if intercept = TRUE.

unit A character string for the name of the unit being simulated. Might be referred
to as a "group" or "district" or "level 2" membership indicator.

idx If set TRUE, a column "idx" is added, numbering the rows from 1:N. If the
argument unit is not NULL, then idx is set to TRUE, but that behavior can be
overridded by setting idx = FALSE.

Details

Today I’ve decided to make the return object a data frame. This allows the possibility of including
a character variable "unit" within the result. For multi-level models, that will help. If unit is not
NULL, its value will be added as a column in the data frame. If unit is not null, the rownames
will be constructed by pasting "unit" name and idx. If unit is not null, then idx will be included as
another column, unless the user explicitly sets idx = FALSE.

Value

A data frame with rownames to specify unit and individual values, including an attribute "unit" with
the unit’s name.

Author(s)

Paul Johnson <pauljohn@ku.edu>

32 getAuxRsq

Examples

X1 <- genX(10, means = c(7, 8), sds = 3, rho = .4)
X2 <- genX(10, means = c(7, 8), sds = 3, rho = .4, unit = "Kansas")
head(X2)
X3 <- genX(10, means = c(7, 8), sds = 3, rho = .4, idx = FALSE, unit = "Iowa")
head(X3)
X4 <- genX(10, means = c("A" = 7, "B" = 8), sds = c(3), rho = .4)
head(X4)
X5 <- genX(10, means = c(7, 3, 7, 5), sds = c(3, 6),

rho = .5, col.names = c("Fred", "Sally", "Henry", "Barbi"))
head(X5)
Sigma <- lazyCov(Rho = c(.2, .3, .4, .5, .2, .1), Sd = c(2, 3, 1, 4))
X6 <- genX(10, means = c(5, 2, -19, 33), Sigma = Sigma, unit = "Winslow_AZ")
head(X6)

getAuxRsq retrieves estimates of the coefficient of determination from a list of
regressions

Description

Asks each regression model in a list for a summary and then reports the R-squares.

Usage

getAuxRsq(auxRegs)

Arguments

auxRegs a list of fitted regression objects

Value

a numeric vector of the same length as auxRegs.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

getDeltaRsquare 33

getDeltaRsquare Calculates the delta R-squares, also known as squared semi-partial
correlation coefficients.

Description

The change in the R-square when a variable is removed from a regression is called delta R-square.
It is sometimes suggested as a way to determine whether a variable has a substantial effect on an
outcome. This is also known as the squared semi-partial correlation coefficient.

Usage

getDeltaRsquare(model)

Arguments

model a fitted regression model

Value

a vector of estimates of the delta R-squares

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

dat1 <- genCorrelatedData(N=250, means=c(100,100),
sds=c(30,20), rho=0.0, stde = 7, beta=c(1.1, 2.4, 4.1, 0))
m1 <- lm(y ~ x1 + x2, data=dat1)
getDeltaRsquare(m1)
more problematic in presence of collinearity
dat2 <- genCorrelatedData(N=250, means=c(100,100),
sds=c(30,20), rho=0.6, stde = 7, beta=c(1.1, 2.4, 4.1, 0))
m2 <- lm(y ~ x1 + x2, data=dat2)
getDeltaRsquare(m2)

34 getFocal

getFocal Select focal values from an observed variable.

Description

This is a generic function with 2 methods, getFocal.default handles numeric variables, while getFo-
cal.factor handles factors. No other methods have been planned for preparation.

Many plotting functions need to select "focal" values from a variable. There is a family of functions
that are used to do that. User requests can be accepted in a number of ways. Numeric and character
variables will be treated differently. Please see details.

Usage

getFocal(x, ...)

Default S3 method:
getFocal(x, xvals = NULL, n = 3, pct = TRUE, ...)

S3 method for class 'factor'
getFocal(x, xvals = NULL, n = 3, pct = TRUE, ...)

S3 method for class 'character'
getFocal(x, xvals = NULL, n = 3, pct = TRUE, ...)

Arguments

x Required. A variable

... Other arguments that will be passed to the user-specified xvals function.

xvals A function name (either "quantile", "std.dev.", "table", or "seq") or a user-supplied
function that can receive x and return a selection of values.

n Number of values to be selected.

pct Default TRUE. Include percentage of observed cases in variable name? (used in
legends)

Details

This is used in functions like plotSlopes or plotCurves.

If xvals is not provided, a default divider for numeric variables will be the algorithm "quantile".
The divider algorithms provided with rockchalk are c("quantile", "std.dev.", "table", "seq"). xvals
can also be the name of a user-supplied function, such as R’s pretty(). If the user supplies a
vector of possible values, that selection will be checked to make sure all elements are within a
slightly expanded range of x. If a value out of range is requested, a warning is issued. Maybe that
should be an outright error?

With factor variables, xvals is generally not used because the only implemented divider algorithm
is "table" (see cutByTable), which selects the n most frequently observed values. That is the default

getPartialCor 35

algorithm. It is legal to specify xvals = "table", but there is no point in doing that. However, xvals
may take two other formats. It may be a user-specified function that can select levels values from
x or it may be a vector of labels (or, names of levels). The purpose of the latter is to check that the
requested levels are actually present in the supplied data vector x. If the levels specified are not in
the observed variable, then this function stops with an error message.

Value

A vector.

A named vector of values.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

x <- rnorm(100)
getFocal(x)
getFocal(x, xvals = "quantile")
getFocal(x, xvals = "quantile", n = 5)
getFocal(x, xvals = "std.dev")
getFocal(x, xvals = "std.dev", n = 5)
getFocal(x, xvals = c(-1000, 0.2, 0,5))
x <- factor(c("A","B","A","B","C","D","D","D"))
getFocal(x)
getFocal(x, n = 2)

x <- c("A","B","A","B","C","D","D","D")
getFocal(x)
getFocal(x, n = 2)

getPartialCor Calculates partial correlation coefficients after retrieving data matrix
froma fitted regression model

Description

The input is a fitted regression model, from which the design matrix is retrieved, along with the
dependent variable. The partial correlation is calculated using matrix algebra that has not been
closely inspected for numerical precision. That is to say, it is in the stats book style, rather than the
numerically optimized calculating format that functions like lm() have adopted.

Usage

getPartialCor(model, dvonly = TRUE)

36 getVIF

Arguments

model A fitted regression model, such as output from lm(). Any object that has methods
model.matrix and model.frame will be sufficient.

dvonly Default = TRUE. Only show first column of the full partial correlation matrix.
That corresponds to the partial correlation of each predictor with y. I mean,
r[yx].[others]

Details

I often criticize partial correlations because they change in a very unstable way as terms are added
or removed in regression models. Nevertheless, I teach with books that endorse them, and in order
to have something to criticize, I need to have a function like this. There are other packages that
offer partial correlation calculations, but they are either 1) not easy to install from CRAN because
of dependencies or 2) do not directly calculate the values we want to see.

To students. 1) This gives the same result as the function cov2pcor in gRbase, so far as I can
tell. Why use this? Simply for convenenience. We have found that installing gRbase is a problem
because it depends on packages in Bioconductor. 2) By default, I show only one column of output,
the partial correlations involving the dependent variable as something being explained. The other
columns that would depict the dependent variable as a predictor of the independent variables have
been omitted. You can let me know if you think that’s wrong.

Please note I have not gone out of my way to make this calculation "numerically stable." It does
not use any orthogonal matrix calculations; it is using the same textbook theoretical stats formula
that is used by cov2pcor in gRbase and in every other package or online source I could find. I
prepared a little WorkingExample file matrix-partial-correlations-1.R that discusses this, in case
you are interested (http://pj.freefaculty.org/R).

Value

A column or matrix of partial correlation coefficients

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

getVIF Converts the R-square to the variance inflation factor

Description

calculates vif = 1/(1-R-square)

Usage

getVIF(rsq)

gmc 37

Arguments

rsq a vector of real values, presumably fitted R-squares

Value

a vector of vif estimates

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

gmc Group Mean Center: Generate group summaries and individual devi-
ations within groups

Description

Multilevel modelers often need to include predictors like the within-group mean and the deviations
of individuals around the mean. This function makes it easy (almost foolproof) to calculate those
variables.

Usage

gmc(dframe, x, by, FUN = mean, suffix = c("_mn", "_dev"), fulldataframe = TRUE)

Arguments

dframe a data frame.
x Variable names or a vector of variable names. Do NOT supply a variable like

dat$x1, do supply a quoted variable name "x1" or a vector c("x1", "x2")
by A grouping variable name or a vector of grouping names. Do NOT supply a

variable like dat$xfactor, do supply a name "xfactor", or a vector c("xfac1",
"xfac2").

FUN Defaults to the mean, have not tested alternatives
suffix The suffixes to be added to column 1 and column 2
fulldataframe Default TRUE. original data frame is returned with new columna added (which I

would call "Stata style"). If FALSE, this will return only newly created columns,
the variables with suffix[1] and suffix[2] appended to names. TRUE is easier
(maybe safer), but also wastes memory.

Details

This was originally just for "group mean-centered" data, but now is more general, can accept func-
tions like median to calculate center and then deviations about that center value within the group.

Similar to Stata egen, except more versatile and fun! Will create 2 new columns for each variable,
with suffixes for the summary and deviations (default suffixes are "_mn" and "_dev". Rows will
match the rows of the original data frame, so it will be easy to merge or cbind them back together.

38 kurtosis

Value

Depending on fulldataframe, either a new data frame with center and deviation columns, or or
original data frame with "x_mn" and "x_dev" variables appended (Stata style).

Author(s)

Paul Johnson

Examples

Make a data frame out of the state data collection (see ?state)
data(state)
statenew <- as.data.frame(state.x77)
statenew$region <- state.region
statenew$state <- rownames(statenew)
head(statenew.gmc1 <- gmc(statenew, c("Income", "Population"), by = "region"))
head(statenew.gmc2 <- gmc(statenew, c("Income", "Population"), by = "region",

fulldataframe = FALSE))
Note dangerous step: assumes row alignment is correct.
return has rownames from original set to identify danger
head(statenew2 <- cbind(statenew, statenew.gmc2))
if(!all.equal(rownames(statenew), rownames(statenew.gmc2))){

warning("Data row-alignment probable error")
}
The following box plots should be identical
boxplot(Income ~ region, statenew.gmc1)
boxplot((Income_mn + Income_dev) ~ region, statenew.gmc1)
Multiple by variables
fakedat <- data.frame(i = 1:200, j = gl(4, 50), k = gl(20, 10),

y1 = rnorm(200), y2 = rnorm(200))
head(gmc(fakedat, "y1", by = "k"), 20)
head(gmc(fakedat, "y1", by = c("j", "k"), fulldataframe = FALSE), 40)
head(gmc(fakedat, c("y1", "y2"), by = c("j", "k"), fulldataframe = FALSE))
Check missing value management
fakedat[2, "k"] <- NA
fakedat[4, "j"] <- NA##' head(gmc(fakedat, "y1", by = "k"), 20)
head(gmc(fakedat, "y1", by = c("j", "k"), fulldataframe = FALSE), 40)

kurtosis Calculate excess kurtosis

Description

Kurtosis is a summary of a distribution’s shape, using the Normal distribution as a comparison. A
distribution with high kurtosis is said to be leptokurtic. It has wider, "fatter" tails and a "sharper",
more "peaked" center than a Normal distribution. In a standard Normal distribution, the kurtosis
is 3. The term "excess kurtosis" refers to the difference kurtosis − 3. Many researchers use the
term kurtosis to refer to "excess kurtosis" and this function follows suit. The user may set excess =
FALSE, in which case the uncentered kurtosis is returned.

kurtosis 39

Usage

kurtosis(x, na.rm = TRUE, excess = TRUE, unbiased = TRUE)

Arguments

x A numeric variable (vector)

na.rm default TRUE. If na.rm = FALSE and there are missing values, the mean and
variance are undefined and this function returns NA.

excess default TRUE. If true, function returns excess kurtosis (kurtosis -3). If false, the
return is simply kurtosis as defined above.

unbiased default TRUE. Should the denominator of the variance estimate be divided by
N-1, rather than N?

Details

If kurtosis is smaller than 3 (or excess kurtosis is negative), the tails are "thinner" than the normal
distribution (there is lower chance of extreme deviations around the mean). If kurtosis is greater
than 3 (excess kurtosis positive), then the tails are fatter (observations can be spread more widely
than in the Normal distribution).

The kurtosis may be calculated with the small-sample bias-corrected estimate of the variance. Set
unbiased = FALSE if this is not desired. It appears somewhat controversial whether this is neces-
sary. According to the US NIST, http://www.itl.nist.gov/div898/handbook/eda/section3/
eda35b.htm, kurtosis is defined as

kurtosis = (mean((x−mean(x))4))/var(x)2

where var(x) is calculated with the denominator N , rather than N − 1.

A distribution is said to be leptokurtic if it is tightly bunched in the center (spiked) and there are
long tails. The long tails reflect the probability of extreme values.

Value

A scalar value or NA

Author(s)

Paul Johnson <pauljohn@ku.edu>

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm

40 lazyCov

lazyCor Create correlation matrices.

Description

Use can supply either a single value (the common correlation among all variables), a column of the
lower triangular values for a correlation matrix, or a candidate matrix. The function will check X
and do the right thing. If X is a matrix, check that it is a valid correlation matrix. If its a single
value, use that to fill up a matrix. If itis a vector, try to use it as a vech to fill the lower triangle..

Usage

lazyCor(X, d)

Arguments

X Required. May be one value, a vech, or a matrix

d Optional. The number of rows in the correlation matrix to be created. lazyCor
will deduce the desired size from X if possible. If X is a single value, d is a
required argument.

Value

A correlation matrix.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

lazyCor(0.5, 8)
lazyCor(c(0.1, 0.2, 0.3))
lazyCor(c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6))

lazyCov Create covariance matrix from correlation and standard deviation in-
formation

Description

This is a flexible function that allows lazy R programmers to create covariance matrix. The user
may be lazy because the correlation and standard deviation infomation may be supplied in a variety
of formats.

lmAuxiliary 41

Usage

lazyCov(Rho, Sd, d)

Arguments

Rho Required. May be a single value (correlation common among all variables), a
vector of the lower triangular values (vech) of a correlation matrix, or a sym-
metric matrix of correlation coefficients.

Sd Required. May be a single value (standard deviation common among all vari-
ables) or a vector of standard deviations, one for each variable.

d Optional. Number of rows or columns. lazyCov may be able to deduce the
required dimension of the final matrix from the input. However, when the user
supplies only a single value for both Rho and Sd, d is necessary.

Value

covariance matrix.

Author(s)

<pauljohn@ku.edu>

Examples

##correlation 0.8 for all pairs, standard deviation 1.0 of each
lazyCov(Rho = 0.8, Sd = 1.0, d = 3)
supply a vech (lower triangular values in a column)
lazyCov(Rho = c(0.1, 0.2, 0.3), Sd = 1.0)
supply vech with different standard deviations
lazyCov(Rho = c(0.1, 0.2, 0.3), Sd = c(1.0, 2.2, 3.3))
newRho <- lazyCor(c(0.5, 0.6, 0.7, -0.1, 0.1, 0.2))
lazyCov(Rho = newRho, Sd = 1.0)
lazyCov(Rho = newRho, Sd = c(3, 4, 5, 6))

lmAuxiliary Estimate leave-one-variable-out regressions

Description

This is a convenience for analysis of multicollinearity in regression.

Usage

lmAuxiliary(model)

Arguments

model a fitted regression model

42 magRange

Value

a list of fitted regressions, one for each omitted variable.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

magRange magRange Magnify the range of a variable.

Description

By default, R’s range function returns the minimum and maximum values of a variable. This returns
a magnified range. It is used for some plotting functions in the rockchalk package

Usage

magRange(x, mult = 1.25)

Arguments

x an R vector variable

mult a multiplier by which to magnify the range of the variable. A value of 1 leaves
the range unchanged. May be a scalar, in which case both ends of the range
are magnified by the same amount. May also be a two valued vector, such as
c(minMag, maxMag), in which case the magnification applied to the minimum
is minMag and the magnification of the maximum is maxMag. After version
1.5.5, mult may be smaller than 1, thus shrinking the range. Setting mult to
values closer to 0 causes the range to shrink to the center point from both sides.

Examples

x1 <- c(0, 0.5, 1.0)
range(x1)
magRange(x1, 1.1)
magRange(x1, c(1.1, 1.4))
magRange(x1, 0.5)
magRange(x1, c(0.1, 0.1))
x1 <- rnorm(100)
range(x1)
magRange(x1)
magRange(x1, 1.5)
magRange(x1, c(1,1.5))

makeSymmetric 43

makeSymmetric Create Symmetric Matrices, possibly covariance or correlation matri-
ces, or check a matrix for symmetry and serviceability.

Description

Check X and do the right thing. If X is a matrix, check that it is a valid for the intended purpose
(symmetric or correlation or covariance). If X a single value, use that to fill up a matrix. If it is
a vector, try to use it as a vech to fill the lower triangle. If d is supplied as an integer, use that as
desired size.

Usage

makeSymmetric(X, d = NULL, diag = NULL, corr = FALSE, cov = FALSE)

Arguments

X A single value, a vector (a vech), or a matrix

d Optional. An integer, the desired number of rows (or columns). Don’t specify
this argument if X is already a matrix. Only required if X is an integer and diag
is not supplied. Otherwise, the function tries to deduce desired size of output
from X (as a vech) and diag.

diag Values for the diagonal. This is important because it alters the way X is in-
terpreted. If diag is not provided, then X is understood to include diagonal
elements.

corr TRUE or FALSE: Should we construct a correlation matrix

cov TRUE or FALSE: Should this be a covariance matrix?

Value

A d x d matrix

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

makeSymmetric(X = 3, d = 4)
makeSymmetric(X = 3, d = 4, diag = c(99, 98, 97, 96))
makeSymmetric(c(1,2,3))
makeSymmetric(c(1,2,3), d = 5)
makeSymmetric(c(0.8,0.4, 0.2), cov = TRUE)
makeSymmetric(c(0.8,0.4, 0.2), cov = TRUE, diag = c(44, 55, 66))

44 mcDiagnose

makeVec makeVec for checking or creating vectors

Description

This is a convenience for handling function arguments. If x is a single value, it makes a vector of
length d in which all values are equal to x. If x is a vector, check that its length is d.

Usage

makeVec(x = NULL, d = NULL)

Arguments

x A single value or a vector

d An integer, the desired size of the vector

Value

A vector of length d

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

mcDiagnose Multi-collinearity diagnostics

Description

Conducts a series of checks for multicollinearity.

Usage

mcDiagnose(model)

Arguments

model a fitted regression model

Value

a list of the "auxiliary regressions" that were fitted during the analysis

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

mcGraph1 45

Examples

library(rockchalk)
N <- 100
dat <- genCorrelatedData3(y~ 0 + 0.2*x1 + 0.2*x2, N=N, means=c(100,200),

sds=c(20,30), rho=0.4, stde=10)
dat$x3 <- rnorm(100, m=40, s=4)
m1 <- lm(y ~ x1 + x2 + x3, data=dat)
summary(m1)
m1d <- mcDiagnose(m1)

m2 <- lm(y ~ x1 * x2 + x3, data=dat)
summary(m2)
m2d <- mcDiagnose(m2)

m3 <- lm(y ~ log(10+x1) + x3 + poly(x2,2), data=dat)
summary(m3)
m3d <- mcDiagnose(m3)

N <- 100
x1 <- 50 + rnorm(N)
x2 <- log(rgamma(N, 2,1))
x3 <- rpois(N, lambda=17)
z1 <- gl(5, N/5)
dummies <- contrasts(z1)[as.numeric(z1),]
dimnames(dummies) <- NULL ## Avoids row name conflict in data.frame below
y3 <- x1 -.5 * x2 + 0.1 * x2^2 + dummies %*% c(0.1,-0.1,-0.2,0.2)+ 5 * rnorm(N)
dat <- data.frame(x1=x1, x2=x2, x3=x3, z1=z1, y3 = y3)

m3 <- lm(y3 ~ x1 + poly(x2,2) + log(x1) + z1, dat)
summary(m3)

mcDiagnose(m3)

mcGraph1 Illustrate multicollinearity in regression, part 1.

Description

This is a set of functions that faciliates the examination of multicollinearity. Suppose the "true"
relationship is y[i] = 0.2 * x1[i] + 0.2 * x2[i] + e where e is Normal(0, stde^2).

mcGraph1 draws the 3D regression space, but all of the points are illustrated "in" the flat plane of
x1-x2 variables.

46 mcGraph1

Usage

mcGraph1(x1, x2, y, x1lab, x2lab, ylab, ...)

mcGraph2(x1, x2, y, rescaley = 1, drawArrows = TRUE, x1lab, x2lab, ylab, ...)

mcGraph3(
x1,
x2,
y,
interaction = FALSE,
drawArrows = TRUE,
x1lab,
x2lab,
ylab,
...

)

Arguments

x1 a predictor vector

x2 a predictor vector

y the dependent variable

x1lab label for the x1 axis, (the one called "xlab" inside persp)

x2lab label for the x2 axis, (the one called "ylab" inside persp)

ylab label for the y (vertical) axis (the one called "zlab" inside persp)

... additional parameters passed to persp

rescaley a single scalar value or a vector of the same length as y.

drawArrows TRUE or FALSE, do you want arrows from the plane to observed y?

interaction a TRUE or FALSE request for inclusion of the x1-x2 interaction in the regression
calculation

Details

These functions are specialized to a particular purpose. If you just want to draw 3D regressions,
look at plotPlane.

Value

mcGraph1 and mcGraph2 return only the perspective matrix from persp. It is returned so that users
can add additional embellishments on the 3D plot (can be used with trans3d)

mcGraph3 returns a list of 2 objects. 1) the fitted regression model2) the perspective matrix used
with persp to draw the image.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

mcGraph1 47

Examples

set.seed(12345)
Create data with x1 and x2 correlated at 0.10
dat <- genCorrelatedData(rho=.1, stde=7)

mcGraph1(dat$x1, dat$x2, dat$y, theta=20, phi=8, ticktype="detailed", nticks=10)

set.seed(12345)
Create data with x1 and x2 correlated at 0.10
dat <- genCorrelatedData(rho=.1, stde=7)
This will "grow" the "cloud" of points up from the
x1-x2 axis
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.0, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.1, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.2, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.3, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.4, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.5, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.6, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.7, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.8, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 0.9, theta = 0)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 1, theta = 0)

##rotate this
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 1, theta = 20)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 1, theta = 40)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 1, theta = 60)
mcGraph2(dat$x1, dat$x2, dat$y, rescaley = 1, theta = 80)

once they reach the top, make them glitter a while
for(i in 1:20){

mcGraph2(dat$x1, dat$x2, dat$y, rescaley = runif(length(dat$x1), .9,1.1), theta = 0)
}

set.seed(12345)
Create data with x1 and x2 correlated at 0.10
dat <- genCorrelatedData(rho=.1, stde=7)

mcGraph3(dat$x1, dat$x2, dat$y, theta = 0)

dat2 <- genCorrelatedData(rho = 0, stde = 7)

mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = 0, phi = 10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = 30, phi = 10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30, phi = 10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30, phi = -10)
mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30, phi = -15)

Run regressions with not-strongly correlated data
modset1 <- list()
for(i in 1:20){

48 meanCenter

dat2 <- genCorrelatedData(rho = .1, stde = 7)
summary(lm(y ~ x1 + x2 , data = dat2))
modset1[[i]] <- mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30)

}

Run regressions with strongly correlated data
modset2 <- list()
for(i in 1:20){

dat2 <- genCorrelatedData(rho = .981, stde = 7)
summary(lm(y ~ x1 + x2 , data = dat2))
modset2[[i]] <- mcGraph3(dat2$x1, dat2$x2, dat2$y, theta = -30)

}

dat3 <- genCorrelatedData(rho = .981, stde = 100, beta=c(0.1, 0.2, 0.3, -0.1))
mcGraph3(dat3$x1, dat3$x2, dat3$y, theta=-10, interaction = TRUE)

meanCenter meanCenter

Description

meanCenter selectively centers or standarizes variables in a regression model.

Usage

meanCenter(
model,
centerOnlyInteractors = TRUE,
centerDV = FALSE,
standardize = FALSE,
terms = NULL

)

Default S3 method:
meanCenter(
model,
centerOnlyInteractors = TRUE,
centerDV = FALSE,
standardize = FALSE,
terms = NULL

)

Arguments

model a fitted regression model (presumably from lm)
centerOnlyInteractors

Default TRUE. If FALSE, all numeric predictors in the regression data frame
are centered before the regression is conducted.

meanCenter 49

centerDV Default FALSE. Should the dependent variable be centered? Do not set this
option to TRUE unless the dependent variable is a numeric variable. Otherwise,
it is an error.

standardize Default FALSE. Instead of simply mean-centering the variables, should they
also be "standardized" by first mean-centering and then dividing by the esti-
mated standard deviation.

terms Optional. A vector of variable names to be centered. Supplying this argument
will stop meanCenter from searching for interaction terms that might need to be
centered.

Details

Works with "lm" class objects, objects estimated by glm(). This centers some or all of the the
predictors and then re-fits the original model with the new variables. This is a convenience to re-
searchers who are often urged to center their predictors. This is sometimes suggested as a way
to ameliorate multi-collinearity in models that include interaction terms (Aiken and West, 1991;
Cohen, et al 2002). Mean-centering may enhance interpretation of the regression intercept, but
it actually does not help with multicollinearity. (Echambadi and Hess, 2007). This function fa-
cilitates comparison of mean-centered models with others by calculating centered variables. The
defaults will cause a regression’s numeric interactive variables to be mean centered. Variations on
the arguments are discussed in details.

Suppose the user’s formula that fits the original model is m1 <- lm(y ~ x1*x2 + x3 + x4, data =
dat). The fitted model will include estimates for predictors x1, x2, x1:x2, x3 and x4. By default,
meanCenter(m1) scans the output to see if there are interaction terms of the form x1:x2. If so,
then x1 and x2 are replaced by centered versions (m1-mean(m1)) and (m2-mean(m2)). The model
is re-estimated with those new variables. model (the main effect and the interaction). The resulting
thing is "just another regression model", which can be analyzed or plotted like any R regression
object.

The user can claim control over which variables are centered in several ways. Most directly, by
specifying a vector of variable names, the user can claim direct control. For example, the argument
terms=c("x1","x2","x3") would cause 3 predictors to be centered. If one wants all predictors
to be centered, the argument centerOnlyInteractors should be set to FALSE. Please note, this
WILL NOT center factor variables. But it will find all numeric predictors and center them.

The dependent variable will not be centered, unless the user explicitly requests it by setting cen-
terDV = TRUE.

As an additional convenience to the user, the argument standardize = TRUE can be used. This will
divide each centered variable by its observed standard deviation. For people who like standardized
regression, I suggest this is a better approach than the standardize function (which is brain-dead in
the style of SPSS). meanCenter with standardize = TRUE will only try to standardize the numeric
predictors.

To be completely clear, I believe mean-centering is not helpful with the multicollinearity problem.
It doesn’t help, it doesn’t hurt. Only a misunderstanding leads its proponents to claim otherwise.
This is emphasized in the vignette "rockchalk" that is distributed with this package.

50 meanCenter

Value

A regression model of the same type as the input model, with attributes representing the names of
the centered variables.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

References

Aiken, L. S. and West, S.G. (1991). Multiple Regression: Testing and Interpreting Interactions.
Newbury Park, Calif: Sage Publications.

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2002). Applied Multiple Regression/Correlation
Analysis for the Behavioral Sciences (Third.). Routledge Academic.

Echambadi, R., and Hess, J. D. (2007). Mean-Centering Does Not Alleviate Collinearity Problems
in Moderated Multiple Regression Models. Marketing Science, 26(3), 438-445.

See Also

standardize residualCenter

Examples

library(rockchalk)
N <- 100
dat <- genCorrelatedData(N = N, means = c(100, 200), sds = c(20, 30),

rho = 0.4, stde = 10)
dat$x3 <- rnorm(100, m = 40, s = 4)

m1 <- lm(y ~ x1 * x2 + x3, data = dat)
summary(m1)
mcDiagnose(m1)

m1c <- meanCenter(m1)
summary(m1c)
mcDiagnose(m1c)

m2 <- lm(y ~ x1 * x2 + x3, data = dat)
summary(m2)
mcDiagnose(m2)

m2c <- meanCenter(m2, standardize = TRUE)
summary(m2c)
mcDiagnose(m2c)

m2c2 <- meanCenter(m2, centerOnlyInteractors = FALSE)
summary(m2c2)

m2c3 <- meanCenter(m2, centerOnlyInteractors = FALSE, centerDV = TRUE)
summary(m2c3)

meanCenter 51

dat <- genCorrelatedData(N = N, means = c(100, 200), sds = c(20, 30),
rho = 0.4, stde = 10)

dat$x3 <- rnorm(100, m = 40, s = 4)
dat$x3 <- gl(4, 25, labels = c("none", "some", "much", "total"))

m3 <- lm(y ~ x1 * x2 + x3, data = dat)
summary(m3)
visualize, for fun
plotPlane(m3, "x1", "x2")

m3c1 <- meanCenter(m3)
summary(m3c1)

Not exactly the same as a "standardized" regression because the
interactive variables are centered in the model frame,
and the term "x1:x2" is never centered again.
m3c2 <- meanCenter(m3, centerDV = TRUE,

centerOnlyInteractors = FALSE, standardize = TRUE)
summary(m3c2)

m3st <- standardize(m3)
summary(m3st)

Make a bigger dataset to see effects better
N <- 500
dat <- genCorrelatedData(N = N, means = c(200,200), sds = c(60,30),

rho = 0.2, stde = 10)
dat$x3 <- rnorm(100, m = 40, s = 4)
dat$x3 <- gl(4, 25, labels = c("none", "some", "much", "total"))
dat$y2 <- with(dat,

0.4 - 0.15 * x1 + 0.04 * x1^2 -
drop(contrasts(dat$x3)[dat$x3,] %*% c(-1.9, 0, 5.1)) +
1000* rnorm(nrow(dat)))

dat$y2 <- drop(dat$y2)

m4literal <- lm(y2 ~ x1 + I(x1*x1) + x2 + x3, data = dat)
summary(m4literal)
plotCurves(m4literal, plotx="x1")
Superficially, there is multicollinearity (omit the intercept)
cor(model.matrix(m4literal)[-1 , -1])

m4literalmc <- meanCenter(m4literal, terms = "x1")
summary(m4literalmc)

m4literalmcs <- meanCenter(m4literal, terms = "x1", standardize = TRUE)
summary(m4literalmcs)

m4 <- lm(y2 ~ poly(x1, 2, raw = TRUE) + x2 + x3, data = dat)
summary(m4)
plotCurves(m4, plotx="x1")

m4mc1 <- meanCenter(m4, terms = "x1")

52 model.data

summary(m4mc1)

m4mc2 <- meanCenter(m4, terms = "x1", standardize = TRUE)
summary(m4mc2)

m4mc3 <- meanCenter(m4, terms = "x1", centerDV = TRUE, standardize = TRUE)
summary(m4mc3)

model.data Create a "raw" (UNTRANSFORMED) data frame equivalent to the
input data that would be required to fit the given model.

Description

This is a generic method. Unlike model.frame and model.matrix, this does not return transformed
variables. It deals with regression formulae that have functions like poly(x, d) in them. It differen-
tiates x from d in those expressions. And it also manages log(x + 10). The default method works
for standarad R regression models like lm and glm.

Usage

model.data(model, ...)

Arguments

model A fitted regression model in which the data argument is specified. This function
will fail if the model was not fit with the data option.

... Arguments passed to implementing methods.

Value

A data frame

Author(s)

Paul Johnson <pauljohn@ku.edu>

model.data.default 53

model.data.default Create a data frame suitable for estimating a model

Description

This is the default method. Works for lm and glm fits.

Usage

Default S3 method:
model.data(model, na.action = na.omit, ...)

Arguments

model A fitted model

na.action Defaults to na.omit, so model as it would appear in user workspace is re-created,
except that rows with missing values are deleted. Changing this argument to
na.pass will provide the data as it was in the workspace.

... Place holder for other arguments, not used at present

Value

A data frame

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

library(rockchalk)

first, check if model.data works when there is no data argument
This used to fail, now OK

x1 <- rnorm(100, m = 100, s = 10)
x2 <- rnorm(100, m = 50, s =20)
y <- rnorm(100, m = 40, s = 3)

m0 <- lm(y ~ log(10+x1) + x2)
m0.data <- model.data(m0)
head(m0.data)

54 model.data.default

m1 <- lm(log(43 + y) ~ log(10+x1) + x2)
m1.data <- model.data(m1)
head(m1.data)

d <- 3

m2 <- lm(log(d + y) ~ log(10+x1) + x2)
m2.data <- model.data(m2)
head(m2.data)

m3 <- lm(log(y + d) ~ log(10+x1) + x2)
m3.data <- model.data(m3)
head(m3.data)

check numeric and categorical predictors

x1 <- rpois(100, l=6)
x2 <- rnorm(100, m=50, s=10)
x3 <- rnorm(100)
xcat1 <- gl(2,50, labels=c("M","F"))
xcat2 <- cut(rnorm(100), breaks=c(-Inf, 0, 0.4, 0.9, 1, Inf),

labels=c("R", "M", "D", "P", "G"))
dat <- data.frame(x1, x2, x3, xcat1, xcat2)
rm(x1, x2, x3, xcat1, xcat2)
dat$xcat1n <- with(dat, contrasts(xcat1)[xcat1, ,drop=FALSE])
dat$xcat2n <- with(dat, contrasts(xcat2)[xcat2,])

STDE <- 20
dat$y <- with(dat,

0.03 + 0.8*x1 + 0.1*x2 + 0.7*x3 +
xcat1n %*% c(2) + xcat2n %*% c(0.1,-2,0.3, 0.1) +
STDE*rnorm(100))

m1 <- lm(y ~ poly(x1, 2), data=dat)
m1.data <- model.data(m1)
head(m1.data)
attr(m1.data, "varNamesRHS")

Check to make sure d is not mistaken for a data column
d <- 2
m2 <- lm(y ~ poly(x1, d), data=dat)
m2.data <- model.data(m2)
head(m2.data)
attr(m2.data, "varNamesRHS")

Check to see how the 10 in log is handled
m3 <- lm(y ~ log(10 + x1) + poly(x1, d) + sin(x2), data=dat)

model.data.default 55

m3.data <- model.data(m3)
head(m3.data)
attr(m3.data, "varNamesRHS")

m4 <- lm(log(50+y) ~ log(d+10+x1) + poly(x1, 2), data=dat)
m4.data <- model.data(m4)
head(m4.data)
attr(m4.data, "varNamesRHS")

m5 <- lm(y ~ x1*x1, data=dat)
m5.data <- model.data(m5)
head(m5.data)
attr(m5.data, "varNamesRHS")

m6 <- lm(y ~ x1 + I(x1^2), data=dat)
m6.data <- model.data(m6)
head(m6.data)
attr(m6.data, "varNamesRHS")

Put in some missings.
poly doesn't work if there are missings, but
can test with log
dat$x1[sample(100, 5)] <- NA
dat$y[sample(100, 5)] <- NA
dat$x2[sample(100, 5)] <- NA
dat$x3[sample(100,10)] <- NA

m1 <- lm(y ~ log(10 + x1), data=dat)
m1.data <- model.data(m1)
head(m1.data)
summarize(m1.data)
attr(m1.data, "varNamesRHS")

m2 <- lm(y ~ log(x1 + 10), data=dat)
m2.data <- model.data(m2)
head(m2.data)
summarize(m1.data)
attr(m1.data, "varNamesRHS")

d <- 2
m3 <- lm(log(50+y) ~ log(d+10+x1) + x2 + sin(x3), data=dat)
m3.data <- model.data(m3)
head(m3.data)
summarize(m3.data)
attr(m3.data, "varNamesRHS")

56 mvrnorm

m4 <- lm(y ~ I(x1) + I(x1^2) + log(x2), data=dat)
m4.data <- model.data(m4)
summarize(m4.data)
attr(m4.data, "varNamesRHS")

m5 <- lm(y ~ x1 + I(x1^2) + cos(x2), data=dat)
m5.data <- model.data(m5)
head(m5.data)
summarize(m5.data)
attr(m5.data, "varNamesRHS")

Now try with some variables in the dataframe, some not

x10 <- rnorm(100)
x11 <- rnorm(100)

m6 <- lm(y ~ x1 + I(x1^2) + cos(x2) + log(10 + x10) + sin(x11) +
x10*x11, data = dat)

m6.data <- model.data(m6)
head(m6.data)
dim(m6.data)
summarize(m5.data)
attr(m6.data, "varNamesRHS")

mvrnorm Minor revision of mvrnorm (from MASS) to facilitate replication

Description

This is the mvrnorm function from the MASS package (Venables and Ripley, 2002), with one small
modification to facilitate replication of random samples. The aim is to make sure that, after the seed
is reset, the first rows of generated data are identical no matter what value is chosen for n. The one
can draw 100 observations, reset the seed, and then draw 110 observations, and the first 100 will
match exactly. This is done to prevent unexpected and peculiar patterns that are observed when n is
altered with MASS package’s mvrnorm.

Usage

mvrnorm(n = 1, mu, Sigma, tol = 1e-06, empirical = FALSE)

mvrnorm 57

Arguments

n the number of samples ("rows" of data) required.

mu a vector giving the means of the variables.

Sigma positive-definite symmetric matrix specifying the covariance matrix of the vari-
ables.

tol tolerance (relative to largest variance) for numerical lack of positive-definiteness
in Sigma

empirical logical. If true, mu and Sigma specify the empirical not population mean and
covariance matrix.

Details

To assure replication, only a very small change is made. The code in MASS::mvrnorm draws a
random sample and fills a matrix by column, and that matrix is then decomposed. The change
implemented here fills that matrix by row and the problem is eliminated.

Some peculiarities are noticed when the covariance matrix changes from a diagonal matrix to a
more general symmetric matrix (non-zero elements off-diagonal). When the covariance is strictly
diagonal, then just one column of the simulated multivariate normal data will be replicated, but
the others are not. This has very troublesome implications for simulations that draw samples of
various sizes and then base calculations on the separate simulated columns (i.e., some columns are
identical, others are completely uncorrelated).

Value

If n = 1 a vector of the same length as mu, otherwise an n by length(mu) matrix with one sample in
each row.

Author(s)

Ripley, B.D. with revision by Paul E. Johnson

References

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition. Springer,
New York. ISBN 0-387-95457-0

See Also

For an alternative multivariate normal generator function, one which has had this fix applied to it,
consider using the new versions of rmvnorm in the package mvtnorm.

Examples

library(MASS)
library(rockchalk)

set.seed(12345)
X0 <- MASS::mvrnorm(n=10, mu = c(0,0,0), Sigma = diag(3))

58 newdata

create a smaller data set, starting at same position
set.seed(12345)
X1 <- MASS::mvrnorm(n=5, mu = c(0,0,0), Sigma = diag(3))
Create a larger data set
set.seed(12345)
X2 <- MASS::mvrnorm(n=15, mu = c(0,0,0), Sigma = diag(3))
The first 5 rows in X0, X1, and X2 are not the same
X0
X1
X2
set.seed(12345)
Y0 <- mvrnorm(n=10, mu = c(0,0,0), Sigma = diag(3))
set.seed(12345)
Y1 <- mvrnorm(n=5, mu = c(0,0,0), Sigma = diag(3))
set.seed(12345)
Y2 <- mvrnorm(n=15, mu = c(0,0,0), Sigma = diag(3))
note results are the same in the first 5 rows:
Y0
Y1
Y2
identical(Y0[1:5,], Y1[1:5,])
identical(Y1[1:5,], Y2[1:5,])

myR <- lazyCor(X = 0.3, d = 5)
mySD <- c(0.5, 0.5, 0.5, 1.5, 1.5)
myCov <- lazyCov(Rho = myR, Sd = mySD)

set.seed(12345)
X0 <- MASS::mvrnorm(n=10, mu = rep(0, 5), Sigma = myCov)
create a smaller data set, starting at same position
set.seed(12345)
X1 <- MASS::mvrnorm(n=5, mu = rep(0, 5), Sigma = myCov)
X0
X1
##' set.seed(12345)
Y0 <- rockchalk::mvrnorm(n=10, mu = rep(0, 5), Sigma = myCov)
create a smaller data set, starting at same position
set.seed(12345)
Y1 <- rockchalk::mvrnorm(n=5, mu = rep(0, 5), Sigma = myCov)
Y0
Y1

newdata Create a newdata frame for usage in predict methods

Description

This is a generic function. The default method covers almost all regression models.

newdata 59

Usage

newdata(model, predVals, n, ...)

Default S3 method:
newdata(
model = NULL,
predVals = NULL,
n = 3,
emf = NULL,
divider = "quantile",
...

)

Arguments

model Required. Fitted regression model
predVals Predictor Values that deserve investigation. Previously, the argument was called

"fl". This can be 1) a keyword, one of c("auto", "margins") 2) a vector of variable
names, which will use default methods for all named variables and the central
values for non-named variabled, 3) a named vector with predictor variables and
divider algorithms, or 4) a full list that supplies variables and possible values.
Please see details and examples.

n Optional. Default = 3. How many focal values are desired? This value is used
when various divider algorithms are put to use if the user has specified keywords
"default", "quantile", "std.dev." "seq", and "table".

... Other arguments.
emf Optional. data frame used to fit model (not a model frame, which may in-

clude transformed variables like log(x1). Instead, use output from function
model.data). It is UNTRANSFORMED variables ("x" as opposed to poly(x,2).1
and poly(x,2).2).

divider Default is "quantile". Determines the method of selection. Should be one of
c("quantile", "std.dev", "seq", "table").

Details

It scans the fitted model, discerns the names of the predictors, and then generates a new data frame.
It can guess values of the variables that might be substantively interesting, but that depends on the
user-supplied value of predVals. If not supplied with a predVals argument, newdata returns a data
frame with one row – the central values (means and modes) of the variables in the data frame that
was used to fit the model. The user can supply a keyword "auto" or "margins". The function will
try to do the "right thing."

The predVals can be a named list that supplies specific values for particular predictors. Any legal
vector of values is allowed. For example, predVals = list(x1 = c(10, 20, 30), x2 = c(40, 50),
xcat = levels(xcat))). That will create a newdata object that has all of the "mix and match"
combinations for those values, while the other predictors are set at their central values.

If the user declares a variable with the "default" keyword, then the default divider algorithm is used
to select focal values. The default divider algorithm is an optional argument of this function. If

60 newdata

the default is not desired, the user can specify a divider algorithm by character string, either "quan-
tile", "std.dev.", "seq", or "table". The user can mix and match algorithms along with requests for
specific focal values, as in predVals = list(x1 = "quantile", x2 = "std.dev.", x3 = c(10,20,
30), xcat1 <- levels(xcat1))

Value

A data frame of x values that could be used as the data = argument in the original regression model.
The attribute "varNamesRHS" is a vector of the predictor variable names.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

See Also

predictOMatic

Examples

library(rockchalk)

Replicate some R classics. The budworm.lg data from predict.glm
will work properly after re-formatting the information as a data.frame:

example from Venables and Ripley (2002, pp. 190-2.)
df <- data.frame(ldose = rep(0:5, 2),

sex = factor(rep(c("M", "F"), c(6, 6))),
SF.numdead = c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16))

df$SF.numalive = 20 - df$SF.numdead

budworm.lg <- glm(cbind(SF.numdead, SF.numalive) ~ sex*ldose,
data = df, family = binomial)

predictOMatic(budworm.lg)

predictOMatic(budworm.lg, n = 7)

predictOMatic(budworm.lg, predVals = c("ldose"), n = 7)

predictOMatic(budworm.lg, predVals = c(ldose = "std.dev.", sex = "table"))

Now make up a data frame with several numeric and categorical predictors.

set.seed(12345)
N <- 100
x1 <- rpois(N, l = 6)
x2 <- rnorm(N, m = 50, s = 10)
x3 <- rnorm(N)
xcat1 <- gl(2,50, labels = c("M","F"))

newdata 61

xcat2 <- cut(rnorm(N), breaks = c(-Inf, 0, 0.4, 0.9, 1, Inf),
labels = c("R", "M", "D", "P", "G"))

dat <- data.frame(x1, x2, x3, xcat1, xcat2)
rm(x1, x2, x3, xcat1, xcat2)
dat$xcat1n <- with(dat, contrasts(xcat1)[xcat1, , drop = FALSE])
dat$xcat2n <- with(dat, contrasts(xcat2)[xcat2,])
STDE <- 15
dat$y <- with(dat,

0.03 + 0.8*x1 + 0.1*x2 + 0.7*x3 + xcat1n %*% c(2) +
xcat2n %*% c(0.1,-2,0.3, 0.1) + STDE*rnorm(N))

Impose some random missings
dat$x1[sample(N, 5)] <- NA
dat$x2[sample(N, 5)] <- NA
dat$x3[sample(N, 5)] <- NA
dat$xcat2[sample(N, 5)] <- NA
dat$xcat1[sample(N, 5)] <- NA
dat$y[sample(N, 5)] <- NA
summarize(dat)

m0 <- lm(y ~ x1 + x2 + xcat1, data = dat)
summary(m0)
The model.data() function in rockchalk creates as near as possible
the input data frame.
m0.data <- model.data(m0)
summarize(m0.data)

no predVals: analyzes each variable separately
(m0.p1 <- predictOMatic(m0))

requests confidence intervals from the predict function
(m0.p2 <- predictOMatic(m0, interval = "confidence"))

predVals as vector of variable names: gives "mix and match" predictions
(m0.p3 <- predictOMatic(m0, predVals = c("x1", "x2")))

predVals as vector of variable names: gives "mix and match" predictions
(m0.p3s <- predictOMatic(m0, predVals = c("x1", "x2"), divider = "std.dev."))

"seq" is an evenly spaced sequence across the predictor.
(m0.p3q <- predictOMatic(m0, predVals = c("x1", "x2"), divider = "seq"))

(m0.p3i <- predictOMatic(m0, predVals = c("x1", "x2"),
interval = "confidence", n = 3))

(m0.p3p <- predictOMatic(m0, predVals = c("x1", "x2"), divider = pretty))

predVals as vector with named divider algorithms.
(m0.p3 <- predictOMatic(m0, predVals = c(x1 = "seq", x2 = "quantile")))
predVals as named vector of divider algorithms

same idea, decided to double-check
(m0.p3 <- predictOMatic(m0, predVals = c(x1 = "quantile", x2 = "std.dev.")))

62 newdata

getFocal(m0.data$x2, xvals = "std.dev.", n = 5)

Change from quantile to standard deviation divider
(m0.p5 <- predictOMatic(m0, divider = "std.dev.", n = 5))

Still can specify particular values if desired
(m0.p6 <- predictOMatic(m0, predVals = list("x1" = c(6,7),

"xcat1" = levels(m0.data$xcat1))))

(m0.p7 <- predictOMatic(m0, predVals = c(x1 = "quantile", x2 = "std.dev.")))
getFocal(m0.data$x2, xvals = "std.dev.", n = 5)

(m0.p8 <- predictOMatic(m0, predVals = list(x1 = quantile(m0.data$x1,
na.rm = TRUE, probs = c(0, 0.1, 0.5, 0.8,
1.0)), xcat1 = levels(m0.data$xcat1))))

(m0.p9 <- predictOMatic(m0, predVals = list(x1 = "seq", "xcat1" =
levels(m0.data$xcat1)), n = 8))

(m0.p10 <- predictOMatic(m0, predVals = list(x1 = "quantile",
"xcat1" = levels(m0.data$xcat1)), n = 5))

(m0.p11 <- predictOMatic(m0, predVals = c(x1 = "std.dev."), n = 10))

Previous same as

(m0.p11 <- predictOMatic(m0, predVals = c(x1 = "default"), divider =
"std.dev.", n = 10))

Previous also same as

(m0.p11 <- predictOMatic(m0, predVals = c("x1"), divider = "std.dev.", n = 10))

(m0.p11 <- predictOMatic(m0, predVals = list(x1 = c(0, 5, 8), x2 = "default"),
divider = "seq"))

m1 <- lm(y ~ log(10+x1) + sin(x2) + x3, data = dat)
m1.data <- model.data(m1)
summarize(m1.data)

(newdata(m1))
(newdata(m1, predVals = list(x1 = c(6, 8, 10))))
(newdata(m1, predVals = list(x1 = c(6, 8, 10), x3 = c(-1,0,1))))
(newdata(m1, predVals = list(x1 = c(6, 8, 10),

x2 = quantile(m1.data$x2, na.rm = TRUE), x3 = c(-1,0,1))))

newdata 63

(m1.p1 <- predictOMatic(m1, divider = "std.dev", n = 5))
(m1.p2 <- predictOMatic(m1, divider = "quantile", n = 5))

(m1.p3 <- predictOMatic(m1, predVals = list(x1 = c(6, 8, 10),
x2 = median(m1.data$x2, na.rm = TRUE))))

(m1.p4 <- predictOMatic(m1, predVals = list(x1 = c(6, 8, 10),
x2 = quantile(m1.data$x2, na.rm = TRUE))))

(m1.p5 <- predictOMatic(m1))
(m1.p6 <- predictOMatic(m1, divider = "std.dev."))
(m1.p7 <- predictOMatic(m1, divider = "std.dev.", n = 3))
(m1.p8 <- predictOMatic(m1, divider = "std.dev.", interval = "confidence"))

m2 <- lm(y ~ x1 + x2 + x3 + xcat1 + xcat2, data = dat)
has only columns and rows used in model fit
m2.data <- model.data(m2)
summarize(m2.data)

Check all the margins
(predictOMatic(m2, interval = "conf"))

Lets construct predictions the "old fashioned way" for comparison

m2.new1 <- newdata(m2, predVals = list(xcat1 = levels(m2.data$xcat1),
xcat2 = levels(m2.data$xcat2)), n = 5)

predict(m2, newdata = m2.new1)

(m2.p1 <- predictOMatic(m2,
predVals = list(xcat1 = levels(m2.data$xcat1),

xcat2 = levels(m2.data$xcat2)),
xcat2 = c("M","D")))

See? same!

Pick some particular values for focus
m2.new2 <- newdata(m2, predVals = list(x1 = c(1,2,3), xcat2 = c("M","D")))
Ask for predictions
predict(m2, newdata = m2.new2)

Compare: predictOMatic generates a newdata frame and predictions in one step

(m2.p2 <- predictOMatic(m2, predVals = list(x1 = c(1,2,3),
xcat2 = c("M","D"))))

(m2.p3 <- predictOMatic(m2, predVals = list(x2 = c(0.25, 1.0),
xcat2 = c("M","D"))))

(m2.p4 <- predictOMatic(m2, predVals = list(x2 = plotSeq(m2.data$x2, 10),
xcat2 = c("M","D"))))

64 newdata

(m2.p5 <- predictOMatic(m2, predVals = list(x2 = c(0.25, 1.0),
xcat2 = c("M","D")), interval = "conf"))

(m2.p6 <- predictOMatic(m2, predVals = list(x2 = c(49, 51),
xcat2 = levels(m2.data$xcat2),
x1 = plotSeq(dat$x1))))

plot(y ~ x1, data = m2.data)
by(m2.p6, list(m2.p6$xcat2), function(x) {

lines(x$x1, x$fit, col = x$xcat2, lty = as.numeric(x$xcat2))
})

m2.newdata <- newdata(m2, predVals = list(x2 = c(48, 50, 52),
xcat2 = c("M","D")))

predict(m2, newdata = m2.newdata)

(m2.p7 <- predictOMatic(m2, predVals = list(x2 = c(48, 50, 52),
xcat2 = c("M","D"))))

(m2.p8 <- predictOMatic(m2,
predVals = list(x2 = range(m2.data$x2, na.rm = TRUE),
xcat2 = c("M","D"))))

(m2.p9 <- predictOMatic(m2, predVals = list(x2 = plotSeq(m2.data$x2),
x1 = quantile(m2.data$x1, pr =c(0.33, 0.66), na.rm = TRUE),
xcat2 = c("M","D"))))

plot(y ~ x2 , data = m2.data)

by(m2.p9, list(m2.p9$x1, m2.p9$xcat2), function(x) {lines(x$x2, x$fit)})

(predictOMatic(m2, predVals = list(x2 = c(50, 60), xcat2 = c("M","D")),
interval = "conf"))

create a dichotomous dependent variable
y2 <- ifelse(rnorm(N) > 0.3, 1, 0)
dat <- cbind(dat, y2)

m3 <- glm(y2 ~ x1 + x2 + x3 + xcat1, data = dat, family = binomial(logit))
summary(m3)
m3.data <- model.data(m3)
summarize(m3.data)

(m3.p1 <- predictOMatic(m3, divider = "std.dev."))

(m3.p2 <- predictOMatic(m3, predVals = list(x2 = c(40, 50, 60),
xcat1 = c("M","F")),

divider = "std.dev.", interval = "conf"))

Want a full accounting for each value of x2?
(m3.p3 <- predictOMatic(m3,

predVals = list(x2 = unique(m3.data$x2),

outreg 65

xcat1 = c("M","F")), interval = "conf"))

Would like to write a more beautiful print method
for output object, but don't want to obscure structure from user.
for (i in names(m3.p1)){
dns <- cbind(m3.p1[[i]][i], m3.p1[[i]]$fit)
colnames(dns) <- c(i, "predicted")
print(dns)
}

outreg Creates a publication quality result table for regression models. Works
with models fitted with lm, glm, as well as lme4.

Description

This provides "markup" that the user is will copy into a LaTeX document. As of rockchalk 1.8.4,
can also create HTML markup. The rockchalk vignette demonstrates use of outreg in Sweave.

Usage

outreg(
modelList,
type = "latex",
modelLabels = NULL,
varLabels = NULL,
tight = TRUE,
centering = c("none", "siunitx", "dcolumn"),
showAIC = FALSE,
float = FALSE,
request,
runFuns,
digits = 3,
alpha = c(0.05, 0.01, 0.001),
SElist = NULL,
PVlist = NULL,
Blist = NULL,
title,
label,
gofNames,
print.results = TRUE,
browse = identical(type, "html") && interactive()

)

66 outreg

Arguments

modelList A regression model or an R list of regression models. Default model names will
be M1, M2, and so forth. User specified names are allowed, such as list("My
Model" = m1, "Her Model" = m2). This is the currently recommended way to
supply model lables. This is less error prone than the use of the modelLabels
argument.

type Default = "latex". The alternatives are "html" and "csv"

modelLabels This is allowed, but discouraged. A vector of character string variables, one for
each element in modelList. Will override the names in modelList.

varLabels To beautify the parameter names printed. Must be a named vector in the format
c(parmname = "displayName", parmname = "displayName"). Include as many
parameters as desired, it is not necessary to supply new labels for all of the
parameters.

tight Table format. If TRUE, parameter estimates and standard errors are printed in
a single column. If FALSE, parameter estimates and standard errors are printed
side by side.

centering Default is "none", but may be "siunitx" or "dcolumn". No centering has been
the only way until this version. User feedback requested. Don’t forget to in-
sert usepackage statment in document preamble for siunitx or dcolumn. If user
specifies centering=TRUE, the siunitx method will be used. The dcolumn ap-
proach assumes that the values reported in the column use fewer than 3 integer
places and 3 decimal places. Additional room is allocated for the significance
stars.

showAIC This is a legacy argument, before the request argument was created. If TRUE,
the AIC estimate is included with the diagnostic values. It has the same effect
as described by request.

float Default = FALSE. Include boilerplate for a LaTeX table float, with the tabular
markup inside it. Not relevant if type = "html".

request Extra information to be retrieved from the summary(model) and displayed. This
must be a vector of named arguments, such as c(adj.r.squared = "adj R^2",
fstatistic = "F"). The name must be a valid name of the output object, the value
should be the label the user wants printed in the table. See details.

runFuns A list of functions

digits Default = 3. How many digits after decimal sign are to be displayed.

alpha Default = c(0.05, 0.01, 0.001). I think stars are dumb, but enough people have
asked me for more stars that I’m caving in.

SElist Optional. Replacement standard errors. Must be a list of named vectors. outreg
uses the R summary to retrieve standard errors, but one might instead want to
use robust or bootstrapped standard errors. This argument may supply a new
SE vector for each fitted regression model, but it is also allowed to supply the
SE replacement for just one of the models. The format should be list("A Model
Label" = c(0.1, 0.3, 0.4), "Another Model Label" = c(0.4, 0.2, 0.3). On
the left, one must use the same names that are used in the modelList argument.

outreg 67

PVlist Optional. A list of replacement "p values". It must be a list of named vectors,
similar in format to SElist. The which the elements are the "p values" that the
user wants to use for each model.

Blist Optional. This is only needed in the rare case where a model’s parameters cannot
be discerned from its summary. List must have names for models, and vectors
slope coefficient. See discussion of SElist and PVlist.

title A LaTeX caption for the table. Not relevant if type = "html".

label A string to be used as a LaTeX label in the table to be created. Not relevant if
type = "html".

gofNames Optional pretty names. R regression summaries use names like "sigma" or
"r.squared" that we might want to revise for presentation. I prefer to refer to
"sigma" as "RMSE", but perhaps you instead prefer something like gofnames =
c("sigma" = "That Estimate I don't understand", "deviance" = "Another
Mystery"). The words that you might replace are "sigma", "r.squared", "de-
viance", "adj.r.squared", "fstatistic".

print.results Default TRUE, marked-up table will be displayed in session. If FALSE, same
result is returned as an object.

browse Display the regression model in a browse? Defaults to TRUE if type = "html"

Details

outreg returns a string vector. It is suggested that users should save the outreg result and then use
cat to save it. That is myMod <- outreg(m1, ...) cat(myMod, file = "myMod.html") or cat(myMod,
file = "myMod.tex". In version 1.8.66, we write the html file to a temporary location and display it
in a web browser. Many word processors will not accept a cut-and paste transfer from the browser,
they will, however, be able to open the html file itself and automatically re-format it in the native
table format.

In version 1.8.111, an argument print.results was introduced. This is TRUE by default, so the
marked-up table is printed into the session, and it is returned as well. If the function should run
silently (as suggested in the last few versions), include print.results = TRUE.

The table includes a minimally sufficient (in my opinion) model summary. It offers parameter
estimates, standard errors, and minimally sufficient goodness of fit. My tastes tend toward mini-
mal tables, but users request more features, and outreg’s interface hass been generalized to allow
specialized requests. See request and runFuns arguments.

I don’t want to write a separate table function for every different kind of regression model that exists
(how exhausting). So I’ve tried to revise outreg() to work with regression functions that follow
the standard R framework. It is known to work lm and glm, as well as merMod class from lme4,
but it will try to interact with other kinds of regression models. Those models should have methods
summary(), coef(), vcov() and nobs(). Package writes should provide those, its not my job.

Do you want "robust standard errors"? P values calculated according to some alternative logic?
Go ahead, calculate them in your code, outreg will now accept them as arguments. As of Version
1.8.4, users can provide their own standard errors and/or p-values for each model. Thus, if a model
answers in the usual way to the standard R request coef(summary(model)), outreg can work if
users supply standard errors.

About the customizations request. The request argument supplies a list of names of summary
output elements that are desired. The format is a pair, a value to be retrieved from summary(model),

68 outreg

and a pretty name to be printed for it. With the lm() regression, for example, one might want
the output of the F test and the adjusted R-square: Include request = c(adj.r.squared = "adj.
R^2", "fstatistic" = "F"). The value on the left is the name of the desired information in the
summary object, while the value on the right is any valid LaTeX (or HTML) markup that the user
desires to display in the table. request terms that generate a single numerical value will generally
work fine, while requests that ask for more structured information, such as the F test (including the
2 degrees of freedom values) may work (user feedback needed).

The runFuns argument is inspired by a user request: could this include the BIC or other summaries
that can be easily calculated? Any R function, such as AIC or BIC, should work, as long as it
returns a single value. This is a two-part specification, a function name and a pretty label to be
used in printing. For example, runFuns = c("AIC" = "Akaike Criterion", "BIC" = "Schwartz
Criterion", "logLik" = "LL").

About centering with dcolumn or siunitx. It appears now that results are better with siunitx but
dcolumn is more familiar to users. The user has the duty to make sure that the document preamble
includes the correct package, \usepackage{dcolumn} or \usepackage{siunitx}. In this version,
I have eliminated the need for the user to specify document-wide settings for siunitx. All of the
details are explicitly written in the header of each tabular. It is done that way to more easily allow
user customizations.

Value

A character vector, one element per row of the regression table.

Note

There are many R packages that can be used to create LaTeX regression tables. memisc, texreg,
apsrtable, xtables, and rms are some. This "outreg" version was in use in our labs before we were
aware that those packages were in development. It is not intended as a competitor, it is just a slightly
different version of the same that is more suited to our needs.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

set.seed(2134234)
dat <- data.frame(x1 = rnorm(100), x2 = rnorm(100))
dat$y1 <- 30 + 5 * rnorm(100) + 3 * dat$x1 + 4 * dat$x2
dat$y2 <- rnorm(100) + 5 * dat$x2
m1 <- lm(y1 ~ x1, data = dat)
m2 <- lm(y1 ~ x2, data = dat)
m3 <- lm(y1 ~ x1 + x2, data = dat)
gm1 <- glm(y1 ~ x1, family = Gamma, data = dat)
outreg(m1, title = "My One Tightly Printed Regression", float = TRUE)
ex1 <- outreg(m1, title = "My One Tightly Printed Regression",

float = TRUE, print.results = FALSE, centering = "siunitx")
Show markup, Save to file with cat()
cat(ex1)
cat(ex1, file = "ex1.tex")

outreg 69

ex2 <- outreg(list("Fingers" = m1), tight = FALSE,
title = "My Only Spread Out Regressions", float = TRUE,
alpha = c(0.05, 0.01, 0.001))

ex3 <- outreg(list("Model A" = m1, "Model B label with Spaces" = m2),
varLabels = list(x1 = "Billie"),
title = "My Two Linear Regressions", request = c(fstatistic = "F"),
print.results = TRUE)

cat(ex3)

ex4 <- outreg(list("Model A" = m1, "Model B" = m2),
modelLabels = c("Overrides ModelA", "Overrides ModelB"),
varLabels = list(x1 = "Billie"),
title = "Note modelLabels Overrides model names")

cat(ex4)
##'
ex5 <- outreg(list("Whichever" = m1, "Whatever" = m2),

title = "Still have showAIC argument, as in previous versions",
showAIC = TRUE, float = TRUE, centering = "siunitx")

ex5s <- outreg(list("Whichever" = m1, "Whatever" = m2),
title = "Still have showAIC argument, as in previous versions",
showAIC = TRUE, float = TRUE, centering = "siunitx")

Launches HTML browse
ex5html <- outreg(list("Whichever" = m1, "Whatever" = m2),

title = "Still have showAIC argument, as in previous versions",
showAIC = TRUE, type = "html")

Could instead, make a file:
fn <- "some_name_you_choose.html"
cat(ex5html, file = fn)
browseURL(fn)
Open that HTML file in LibreOffice or MS Word

ex6 <- outreg(list("Whatever" = m1, "Whatever" =m2),
title = "Another way to get AIC output",
runFuns = c("AIC" = "Akaike IC"))

cat(ex6)

ex7 <- outreg(list("Amod" = m1, "Bmod" = m2, "Gmod" = m3),
title = "My Three Linear Regressions", float = FALSE)

cat(ex7)

A new feature in 1.85 is ability to provide vectors of beta estimates
standard errors, and p values if desired.
Suppose you have robust standard errors!
if (require(car)){

newSE <- sqrt(diag(car::hccm(m3)))
ex8 <- outreg(list("Model A" = m1, "Model B" = m2, "Model C" = m3, "Model C w Robust SE" = m3),

SElist= list("Model C w Robust SE" = newSE))

70 outreg

cat(ex8)
}

ex11 <- outreg(list("I Love Long Titles" = m1,
"Prefer Brevity" = m2,
"Short" = m3), tight = FALSE, float = FALSE)

cat(ex11)
##'
ex12 <- outreg(list("GLM" = gm1), float = TRUE)
cat(ex12)

ex13 <- outreg(list("OLS" = m1, "GLM" = gm1), float = TRUE,
alpha = c(0.05, 0.01))

cat(ex13)
##'
ex14 <- outreg(list(OLS = m1, GLM = gm1), float = TRUE,

request = c(fstatistic = "F"), runFuns = c("BIC" = "BIC"))
cat(ex14)
ex15 <- outreg(list(OLS = m1, GLM = gm1), float = TRUE,

request = c(fstatistic = "F"), runFuns = c("BIC" = "BIC"),
digits = 5, alpha = c(0.01))

ex16 <- outreg(list("OLS 1" = m1, "OLS 2" = m2, GLM = gm1), float = TRUE,
request = c(fstatistic = "F"),
runFuns = c("BIC" = "BIC", logLik = "ll"),
digits = 5, alpha = c(0.05, 0.01, 0.001))

ex17 <- outreg(list("Model A" = gm1, "Model B label with Spaces" = m2),
request = c(fstatistic = "F"),
runFuns = c("BIC" = "Schwarz IC", "AIC" = "Akaike IC",
"nobs" = "N Again?"))

Here's a fit example from lme4.
if (require(lme4) && require(car)){

fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
ex18 <- outreg(fm1)
cat(ex18)
Fit same with lm for comparison
lm1 <- lm(Reaction ~ Days, sleepstudy)
Get robust standard errors
lm1rse <- sqrt(diag(car::hccm(lm1)))

if(interactive()){
ex19 <- outreg(list("Random Effects" = fm1,

"OLS" = lm1, "OLS Robust SE" = lm1),
SElist = list("OLS Robust SE" = lm1rse), type = "html")

}
From the glmer examples
gm2 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd),

data = cbpp, family = binomial)
lm2 <- lm(incidence/size ~ period, data = cbpp)
lm2rse <- sqrt(diag(car::hccm(lm2)))
Lets see what MASS::rlm objects do? Mostly OK

outreg2HTML 71

rlm2 <- MASS::rlm(incidence/size ~ period, data = cbpp)

ex20 <- outreg(list("GLMER" = gm2, "lm" = lm2, "lm w/robust se" = lm2,
"rlm" = rlm2), SElist = list("lm w/robust se" = lm2rse),
type = "html")

}

outreg2HTML Convert LaTeX output from outreg to HTML markup

Description

This function is deprecated. Instead, please use outreg(type = "html")

Usage

outreg2HTML(outreg, filename)

Arguments

outreg output from outreg

filename A file name into which the regression markup is to be saved. Should end in
.html.

Details

This will write the html on the screen, but if a filename argument is supplied, it will write a file.
One can then open or insert the file into Libre Office or other popular "word processor" programs.

Value

A vector of strings

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

dat <- genCorrelatedData2(means = c(50,50,50,50,50,50),
sds = c(10,10,10,10,10,10), rho = 0.2, beta = rnorm(7), stde = 50)

m1 <- lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x1*x2, data = dat)
summary(m1)

m1out <- outreg(list("Great Regression" = m1), alpha = c(0.05, 0.01, 0.001),
request = c("fstatistic" = "F"), runFuns = c(AIC = "AIC"),
float = TRUE)

##html markup will appear on screen

72 padW0

outreg2HTML(m1out)
outreg2HTML(m1out, filename = "funky.html")
I'm not running that for you because you
need to be in the intended working directory

m2 <- lm(y ~ x1 + x2, data = dat)

m2out <- outreg(list("Great Regression" = m1, "Small Regression" = m2),
alpha = c(0.05, 0.01, 0.01),
request = c("fstatistic" = "F"), runFuns = c(BIC = "BIC"))

outreg2HTML(m2out)
Run this for yourself, it will create the output file funky2.html
outreg2HTML(m2out, filename = "funky2.html")
Please inspect the file "funky2.html

padW0 Pad with 0’s.

Description

Sometimes we receive this c(1, 22, 131) and we need character variables of the same size, such as
c("001", "022", "131"). This happens if a user has mistakenly converted a zip code (US regional
identifier) like "00231" to a number. This function converts the number back to a 0 padded string.

Usage

padW0(x)

Arguments

x a numeric variable.

Details

This works differently if the number provided is an integer, or a character string. Integers are left
padded with the character "0". A character string will be left-padded with blanks.

Value

A character string vector padded with 0’s

Author(s)

Paul Johnson <pauljohn@ku.edu>

pctable 73

Examples

x <- c(1 , 11, 22, 121, 14141, 31)
(xpad <- padW0(x))
x <- rpois(7, lambda = 11)
(xpad <- padW0(x))
x <- c("Alabama", "Iowa", "Washington")

pctable Creates a cross tabulation with counts and percentages

Description

This function is pronounced "presentable"! The original purpose was to create a particular kind
of cross tabulation that I ask for in class: counts with column percentages. Requests from users
have caused a bit more generality to be built into the function. Now, optionally, it will provide row
percents. This is a generic function. Most users will find the formula method most convenient. Use
the colpct and rowpct arguments to indicate if column or row percentages are desired.

I suggest most users will use the formula method for this. Running a command like this will,
generally, do the right thing:

tab <- pctable(y ~ x, data = dat)

There is also a method that will work with characters representing variable names.

tab <- pctable("y", "x", data = dat)

Running the function should write a table in the output console, but it also creates an object (tab).
That object can be displayed in a number of ways.

A summary method is provided, so one could look at different representations of the same table.

summary(tab, rowpct = TRUE, colpct = FALSE)

or

summary(tab, rowpct = TRUE, colpct = TRUE)

Tables that include only row or column percentages will be compatible with the html and latex
exporters in the excellent tables package.

The formula method is the recommended method for users. Run pctable(myrow ~ mycol, data =
dat). In an earlier version, I gave different advice, so please adjust your usage.

The character method exists only for variety. It accepts character strings rather than a formula to
define the columns that should be plotted. The method used most often for most users should be the
formula method.

Usage

pctable(rv, ...)

Default S3 method:
pctable(

rv,

74 pctable

cv,
rvlab = NULL,
cvlab = NULL,
colpct = TRUE,
rowpct = FALSE,
rounded = FALSE,
...

)

S3 method for class 'formula'
pctable(
formula,
data = NULL,
rvlab = NULL,
cvlab = NULL,
colpct = TRUE,
rowpct = FALSE,
rounded = FALSE,
...

)

S3 method for class 'character'
pctable(
rv,
cv,
data = NULL,
rvlab = NULL,
cvlab = NULL,
colpct = TRUE,
rowpct = FALSE,
rounded = FALSE,
...

)

Arguments

rv A row variable name

... Other arguments. So far, the most likely additional arguments are to be passed
along to the table function, such as "exclude", "useNA", or "dnn" (which will
override the rvlab and cvlab arguments provided by some methods). Some
methods will also pass along these arguments to model.frame, "subset" "xlev",
"na.action", "drop.unused.levels".

cv Column variable

rvlab Optional: row variable label

cvlab Optional: col variable label

colpct Default TRUE: are column percentags desired in the presentation of this result?

rowpct Default FALSE: are row percentages desired in the presentation of this result

pctable 75

rounded Default FALSE, rounds to 10’s for privacy purposes.

formula A two sided formula.

data A data frame.

Details

Please bear in mind the following. The output object is a list of tables of partial information, which
are then assembled in various ways by the print method (print.pctable). A lovely table will appear
on the screen, but the thing itself has more information and a less beautiful structure.

A print method is supplied. For any pctable object, it is possible to run follow-ups like

print(tab, rowpct = TRUE, colpct = FALSE)

The method print.pctable(tab) assembles the object into (my opinion of) a presentable form.
The print method has argumnets rowpct and colpct that determine which percentages are included
in the presentation.

When using character arguments, the row variable rv rowvar must be a quoted string if the user
intends the method pctable.character to be dispatched. The column variable cv may be a string or
just a variable name (which this method will coerce to a string).

Value

A list with tables (count, column percent, row percent) as well as a copy of the call.

Author(s)

Paul Johnson <pauljohn@ku.edu>

See Also

tabular and the CrossTable function in gmodels package.

Examples

dat <- data.frame(x = gl(4, 25),
y = sample(c("A", "B", "C", "D", "E"), 100, replace= TRUE))

pctable(y ~ x, dat)
pctable(y ~ x, dat, exclude = NULL)
pctable(y ~ x, dat, rvlab = "My Outcome Var", cvlab = "My Columns")
pctable(y ~ x, dat, rowpct = TRUE, colpct = FALSE)
pctable(y ~ x, dat, rowpct = TRUE, colpct = TRUE)
pctable(y ~ x, dat, rowpct = TRUE, colpct = TRUE, exclude = NULL)
tab <- pctable(y ~ x, dat, rvlab = "Outcome", cvlab = "Predictor")
dat <- data.frame(x1 = gl(4, 25, labels = c("Good", "Bad", "Ugly", "Indiff")),

x2 = gl(5, 20, labels = c("Denver", "Cincy", "Baltimore", "NY", "LA")),
y = sample(c("A", "B", "C", "D", "E"), 100, replace= TRUE))

tab <- pctable(y ~ x1, data = dat, rvlab = "my row label",
subset = dat$x1 %in% c("Good", "Bad"),
drop.unused.levels = TRUE)

tab <- pctable(y ~ x1, data = dat, rvlab = "my row label",
subset = dat$x1 %in% c("Good", "Bad"))

76 perspEmpty

pctable("y", "x1", dat)
pctable("y", x1, dat)
tab <- pctable(y ~ x2, data = dat, rvlab = "A Giant Variable")
summary(tab, rowpct = TRUE, colpct = FALSE)
tabsum <- summary(tab)

if user has tables package, can push out to latex or html
if (require(tables) & require(Hmisc)){

tabsumtab <- tables::as.tabular(tabsum)
Hmisc::html(tabsumtab)
fn <- tempfile(pattern = "file", tmpdir = tempdir(),

fileext = ".html")
Hmisc::html(tabsumtab, file = fn)
print(paste("The file saved was named", fn, "go get it."))
if (interactive()) browseURL(fn)
unlink(fn)
go get the fn file if you want to import it in document
Now LaTeX output
have to escape the percent signs
tabsumtab <- apply(tabsumtab, 1:2, function(x) {gsub("%", "\\\\%", x) })
fn2 <- tempfile(pattern = "file", tmpdir = tempdir(),

fileext = ".tex")
Hmisc::latex(tabsumtab, file = fn2)
print(paste("The file saved was named", fn2, "go get it."))

}

perspEmpty perspEmpty

Description

Creates a persp plot without drawing anything in the interior. Does equivalent of plot(type="n")
for persp.

Usage

perspEmpty(
x1,
x2,
y,
x1lab = "x1",
x2lab = "x2",
ylab = "y",
x1lim,
x2lim,
...

)

plot.testSlopes 77

Arguments

x1 data for the first horizontal axis, an R vector

x2 data for the second horizontal axis, an R vector

y data for the vertical axis, an R vector

x1lab label for the x1 axis, (the one called "xlab" inside persp)

x2lab label for the x2 axis, (the one called "ylab" inside persp)

ylab label for the y (vertical) axis (the one called "zlab" inside persp)

x1lim Optional: limits for x1 axis (should be a vector with 2 elements)

x2lim Optional: limits for x2 axis (should be a vector with 2 elements)

... further arguments that are passed to persp. Please note Please remember that
y is the vertical axis, but for persp, that is the one I call x2. Thus dot-dot-
dot arguments including xlab, ylab, zlab, xlim, ylim, and zlim are going to be
ignored.

Details

Regression demonstrations require a blank slate in which points and planes can be drawn. This
function creates that blank persp canvas for those projects. It is not necessary that x1, x2 and y be
vectors of the same length, since this function’s only purpose is to plot an empty box with ranges
determined by the input variables. persp calls the 3 axes x, y, and z, but here they are called x1, x2,
and y.

Value

The perspective matrix that is returned by persp

Examples

x1 <- 1:10
x2 <- 41:50
y <- rnorm(10)
perspEmpty(x1, x2, y)
res <- perspEmpty(x1, x2, y, ticktype="detailed", nticks=10)
mypoints1 <- trans3d (x1, x2, y, pmat = res)
points(mypoints1, pch = 16, col= "blue")

plot.testSlopes Plot testSlopes objects

Description

plot.testSlopes is a method for the generic function plot. It has been revised so that it creates a
plot illustrating the marginal effect, using the Johnson-Neyman interval calculations to highlight
the "statistically significantly different from zero" slopes.

78 plotCurves

Usage

S3 method for class 'testSlopes'
plot(x, ..., shade = TRUE, col = rgb(1, 0, 0, 0.1))

Arguments

x A testSlopes object.

... Additional arguments that are ignored currently.

shade Optional. Create colored polygon for significant regions.

col Optional. Color of the shaded area. Default transparent pink.

Value

NULL

Author(s)

<pauljohn@ku.edu>

plotCurves Assists creation of predicted value curves for regression models.

Description

Creates a predicted value plot that includes a separate predicted value line for each value of a
focal variable. The x axis variable is specified by the plotx argument. As of rockchalk 1.7.x, the
moderator argument, modx, is optional. Think of this a new version of R’s termplot, but it allows
for interactions. And it handles some nonlinear transformations more gracefully than termplot.

Usage

plotCurves(
model,
plotx,
nx = 40,
modx,
plotxRange = NULL,
n,
modxVals = NULL,
interval = c("none", "confidence", "prediction"),
plotPoints = TRUE,
plotLegend = TRUE,
legendTitle = NULL,
legendPct = TRUE,
col = c("black", "blue", "darkgreen", "red", "orange", "purple", "green3"),
llwd = 2,

plotCurves 79

opacity = 100,
envir = environment(formula(model)),
...

)

Arguments

model Required. Fitted regression object. Must have a predict method

plotx Required. String with name of predictor for the x axis

nx Number of values of plotx at which to calculate the predicted value. Default =
40.

modx Optional. String for moderator variable name. May be either numeric or factor.

plotxRange Optional. If not specified, the observed range of plotx will be used to determine
the axis range.

n Optional. Number of focal values of modx, used by algorithms specified by
modxVals; will be ignored if modxVals supplies a vector of focal values.

modxVals Optional. A vector of focal values for which predicted values are to be plotted.
May also be a character string to select an algorithm ("quantile","std.dev." or
"table"), or a user-supplied function to select focal values (a new method similar
to getFocal). If modx is a factor, currently, the only available algorithm is
"table" (see getFocal.factor.

interval Optional. Intervals provided by the predict.lm may be supplied, either "conf"
(95 interval for the estimated conditional mean) or "pred" (95 interval for ob-
served values of y given the rest of the model).

plotPoints Optional. TRUE or FALSE: Should the plot include the scatterplot points along
with the lines.

plotLegend Optional. TRUE or FALSE: Should the default legend be included?

legendTitle Optional. You’ll get an automatically generated title, such as "Moderator: modx",
but if you don’t like that, specify your own string here.

legendPct Default = TRUE. Variable labels print with sample percentages.

col I offer my preferred color vector as default. Replace if you like. User may sup-
ply a vector of valid color names, or rainbow(10) or gray.colors(5). Color
names will be recycled if there are more focal values of modx than colors pro-
vided.

llwd Optional. Line widths for predicted values. Can be single value or a vector,
which will be recycled as necessary.

opacity Optional, default = 100. A number between 1 and 255. 1 means "transparent"
or invisible, 255 means very dark. the darkness of confidence interval regions

envir environment to search for variables.

... further arguments that are passed to plot or predict. The arguments that are
monitored to be sent to predict are c("type", "se.fit", "dispersion", "interval",
"level", "terms", "na.action").

80 plotCurves

Details

This is similar to plotSlopes, but it accepts regressions in which there are transformed variables,
such as "log(x1)". It creates a plot of the predicted dependent variable against one of the numeric
predictors, plotx. It draws a predicted value line for each value of modx, a moderator variable. The
moderator may be a numeric or categorical moderator variable.

The user may designate which particular values of the moderator are used for calculating the pre-
dicted value lines. That is, modxVals = c(12,22,37) would draw lines for values 12, 22, and 37 of
the moderator. User may instead supply a character string to choose one of the built in algorithms.
The default algorithm is "quantile", which will select n values that are evenly spaced along the modx
axis. The algorithm "std.dev" will select the mean of modx (m) and then it will select values that
step away from the mean in standard deviation sd units. For example, if n = 3, the focal values will
m, m - sd, am + sd.

Value

A plot is created as a side effect, a list is returned including 1) the call, 2) a newdata object that
includes information on the curves that were plotted, 3) a vector modxVals, the values for which
curves were drawn.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

library(rockchalk)

Replicate some R classics. The budworm.lg data from predict.glm
will work properly after re-formatting the information as a data.frame:

example from Venables and Ripley (2002, pp. 190-2.)
df <- data.frame(ldose = rep(0:5, 2),

sex = factor(rep(c("M", "F"), c(6, 6))),
SF.numdead = c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16))

df$SF.numalive = 20 - df$SF.numdead

budworm.lg <- glm(cbind(SF.numdead, SF.numalive) ~ sex*ldose, data = df,
family = binomial)

plotCurves(budworm.lg, plotx = "ldose", modx = "sex", interval = "confidence",
ylim = c(0, 1))

See infert
model2 <- glm(case ~ age + parity + education + spontaneous + induced,

data = infert, family = binomial())

Curvature so slight we can barely see it
model2pc1 <- plotCurves(model2, plotx = "age", modx = "education",

interval = "confidence", ylim = c(0, 1))

plotCurves 81

model2pc2 <- plotCurves(model2, plotx = "age", modx = "education",
modxVals = levels(infert$education)[1],
interval = "confidence", ylim = c(0, 1))

model2pc2 <- plotCurves(model2, plotx = "age", modx = "education",
modxVals = levels(infert$education)[c(2,3)],
interval = "confidence", ylim = c(0, 1))

model2pc2 <- plotCurves(model2, plotx = "age", modx = "education",
modxVals = levels(infert$education)[c(2,3)],
ylim = c(0, 1), type = "response")

Manufacture some data
set.seed(12345)
N <- 500
dat <- genCorrelatedData2(N = 500, means = c(5, 0, 0, 0), sds = rep(1, 4),

rho = 0.2, beta = rep(1, 5), stde = 20)

dat$xcat1 <- gl(2, N/2, labels = c("Monster", "Human"))
dat$xcat2 <- cut(rnorm(N), breaks = c(-Inf, 0, 0.4, 0.9, 1, Inf),

labels = c("R", "M", "D", "P", "G"))

###The design matrix for categorical variables, xcat numeric
dat$xcat1n <- with(dat, contrasts(xcat1)[xcat1,])
dat$xcat2n <- with(dat, contrasts(xcat2)[xcat2,])

stde <- 2
dat$y <- with(dat, 0.03 + 11.5 * log(x1) * contrasts(dat$xcat1)[dat$xcat1] +

0.1 * x2 + 0.04 * x2^2 + stde*rnorm(N))

stde <- 1
dat$y2 <- with(dat, 0.03 + 0.1 * x1 + 0.1 * x2 + 0.25 * x1 * x2 + 0.4 * x3 -

0.1 * x4 + stde * rnorm(N))
stde <- 8
dat$y3 <- with(dat, 3 + 0.5 * x1 + 1.2 * (as.numeric(xcat1)-1) +
-0.8 * (as.numeric(xcat1)-1) * x1 + stde * rnorm(N))

stde <- 8
dat$y4 <- with(dat, 3 + 0.5 * x1 +

contrasts(dat$xcat2)[dat$xcat2,] %*% c(0.1, -0.2, 0.3, 0.05) +
stde * rnorm(N))

Curvature with interaction
m1 <- lm(y ~ log(x1)*xcat1 + x2 + I(x2^2), data=dat)

82 plotCurves

summary(m1)

First, with no moderator
plotCurves(m1, plotx = "x1")

plotCurves(m1, plotx = "x1", modx = "xcat1")

Verify that plot by comparing against a manually contructed alternative
par(mfrow=c(1,2))
plotCurves(m1, plotx = "x1", modx = "xcat1")
newdat <- with(dat, expand.grid(x1 = plotSeq(x1, 30), xcat1 = levels(xcat1)))
newdat$x2 <- with(dat, mean(x2, na.rm = TRUE))
newdat$m1p <- predict(m1, newdata = newdat)
plot(y ~ x1, data = dat, type = "n", ylim = magRange(dat$y, c(1, 1.2)))
points(y ~ x1, data = dat, col = dat$xcat1, cex = 0.4, lwd = 0.5)
by(newdat, newdat$xcat1, function(dd) {lines(dd$x1, dd$m1p)})
legend("topleft", legend=levels(dat$xcat1), col = as.numeric(dat$xcat1), lty = 1)
par(mfrow = c(1,1))
##Close enough!

plotCurves(m1, plotx = "x2", modx = "x1")

plotCurves(m1, plotx = "x2", modx = "xcat1")

plotCurves(m1, plotx = "x2", modx = "xcat1", interval = "conf")

m2 <- lm(y ~ log(x1)*xcat1 + xcat1*(x2 + I(x2^2)), data = dat)
summary(m2)
plotCurves(m2, plotx = "x2", modx = "xcat1")

plotCurves(m2, plotx ="x2", modx = "x1")

m3a <- lm(y ~ poly(x2, 2) + xcat1, data = dat)

plotCurves(m3a, plotx = "x2")
plotCurves(m3a, plotx = "x2", modx = "xcat1")
#OK

m4 <- lm(log(y+10) ~ poly(x2, 2)*xcat1 + x1, data = dat)
summary(m4)
plotCurves(m4, plotx = "x2")

plotCurves(m4, plotx ="x2", modx = "xcat1")

plotCurves(m4, plotx = "x2", modx = "x1")

plotCurves(m4, plotx = "x2", modx = "xcat1")

plotCurves(m4, plotx = "x2", modx = "xcat1", modxVals = c("Monster"))

plotFancy 83

##ordinary interaction
m5 <- lm(y2 ~ x1*x2 + x3 +x4, data = dat)
summary(m5)
plotCurves(m5, plotx = "x1", modx = "x2")
plotCurves(m5, plotx = "x1", modx = "x2", modxVals = c(-2, -1, 0, 1, 2))
plotCurves(m5, plotx = "x1", modx = "x2", modxVals = c(-2))
plotCurves(m5, plotx = "x1", modx = "x2", modxVals = "std.dev.")
plotCurves(m5, plotx = "x1", modx = "x2", modxVals = "quantile")
plotCurves(m5, plotx = "x3", modx = "x2")

if(require(carData)){
mc1 <- lm(statusquo ~ income * sex, data = Chile)
summary(mc1)
plotCurves(mc1, plotx = "income")
plotCurves(mc1, modx = "sex", plotx = "income")
plotCurves(mc1, modx = "sex", plotx = "income", modxVals = "M")

mc2 <- lm(statusquo ~ region * income, data = Chile)
summary(mc2)
plotCurves(mc2, modx = "region", plotx = "income")
plotCurves(mc2, modx = "region", plotx = "income",

modxVals = levels(Chile$region)[c(1,4)])
plotCurves(mc2, modx = "region", plotx = "income", modxVals = c("S","M","SA"))
plotCurves(mc2, modx = "region", plotx = "income", modxVals = c("S","M","SA"),

interval = "conf")

plotCurves(mc2, modx = "region", plotx = "income", plotPoints = FALSE)

mc3 <- lm(statusquo ~ region * income + sex + age, data = Chile)
summary(mc3)
plotCurves(mc3, modx = "region", plotx = "income")

mc4 <- lm(statusquo ~ income * (age + I(age^2)) + education + sex + age, data = Chile)
summary(mc4)
plotCurves(mc4, plotx = "age")
plotCurves(mc4, plotx = "age", interval = "conf")

plotCurves(mc4, plotx = "age", modx = "income")
plotCurves(mc4, plotx = "age", modx = "income", plotPoints = FALSE)

plotCurves(mc4, plotx = "income", modx = "age")
plotCurves(mc4, plotx = "income", modx = "age", n = 8)

plotCurves(mc4, plotx = "income", modx = "age", modxVals = "std.dev.")
plotCurves(mc4, modx = "income", plotx = "age", plotPoints = FALSE)

}

plotFancy Regression plots with predicted value lines, confidence intervals, color
coded interactions

84 plotFancy

Description

This is the back-end for the functions plotSlopes and plotCurves. Don’t use it directly.

Usage

plotFancy(
newdf,
olddf,
plotx,
modx,
modxVals,
interval,
plotPoints,
legendArgs,
col = NULL,
llwd = 2,
opacity,
...

)

Arguments

newdf The new data frame with predictors and fit, lwr, upr variables

olddf A data frame with variables(modxVar, plotxVar, depVar)

plotx Character string for name of variable on horizontal axis

modx Character string for name of moderator variable.

modxVals Values of moderator for which lines are desired

interval TRUE or FALSE: want confidence intervals?

plotPoints TRUE or FALSE: want to see observed values in plot?

legendArgs Set as "none" for no legend. Otherwise, a list of arguments for the legend func-
tion

col requested color scheme for lines and points. One per value of modxVals.

llwd requested line width, will re-cycle.

opacity Value in 0, 255 for darkness of interval shading

... Other arguments passed to plot function.

Value

col, lty, and lwd information

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

plotFancyCategories 85

plotFancyCategories Draw display for discrete predictor in plotSlopes

Description

There’s plotFancy for numeric predictor. This is for discrete

Usage

plotFancyCategories(
newdf,
olddf,
plotx,
modx = NULL,
modxVals,
xlab,
xlim,
ylab,
ylim,
col = c("black", "blue", "darkgreen", "red", "orange", "purple", "green3"),
opacity = 120,
main,
space = c(0, 1),
width = 0.2,
llwd = 1,
offset = 0,
...,
gridArgs = list(lwd = 0.3, lty = 5),
legendArgs

)

Arguments

newdf The new data object, possibly from predictOMatic

olddf The model data matrix

plotx Name of horizontal axis variable

modx Name of moderator

modxVals values for modx

xlab X axis label

xlim x axis limits. Don’t bother setting this, the internal numbering is too compli-
cated.

ylab y axis label

ylim y axis limits

col color pallet for values of moderator variable

86 plotPlane

opacity Value in 0, 255 for darkness of interval shading

main main title

space same as space in barplot, vector c(0, 1) is c(space_between, space_before_first)

width width of shaded bar area, default is 0.2. Maximum is 1.

llwd requested line width, will re-cycle.

offset Shifts display to right (not tested)

... Arguments sent to par

gridArgs A list of values to control printing of reference grid. Set as "none" if no grid is
desired.

legendArgs Arguments to the legend function. Set as "none" if no legend is needed. Other-
wise, provide a list

Value

None

Author(s)

Paul Johnson <pauljohn@ku.edu>

plotPlane Draw a 3-D regression plot for two predictors from any linear or non-
linear lm or glm object

Description

This allows user to fit a regression model with many variables and then plot 2 of its predictors
and the output plane for those predictors with other variables set at mean or mode (numeric or
factor). This is a front-end (wrapper) for R’s persp function. Persp does all of the hard work, this
function reorganizes the information for the user in a more readily understood way. It intended as a
convenience for students (or others) who do not want to fight their way through the details needed
to use persp to plot a regression plane. The fitted model can have any number of input variables,
this will display only two of them. And, at least for the moment, I insist these predictors must be
numeric variables. They can be transformed in any of the usual ways, such as poly, log, and so
forth.

Usage

plotPlane(
model = NULL,
plotx1 = NULL,
plotx2 = NULL,
drawArrows = FALSE,
plotPoints = TRUE,
npp = 20,

plotPlane 87

x1lab,
x2lab,
ylab,
x1lim,
x2lim,
x1floor = 5,
x2floor = 5,
pch = 1,
pcol = "blue",
plwd = 0.5,
pcex = 1,
llwd = 0.3,
lcol = 1,
llty = 1,
acol = "red",
alty = 4,
alwd = 0.3,
alength = 0.1,
linesFrom,
lflwd = 3,
envir = environment(formula(model)),
...

)

Default S3 method:
plotPlane(
model = NULL,
plotx1 = NULL,
plotx2 = NULL,
drawArrows = FALSE,
plotPoints = TRUE,
npp = 20,
x1lab,
x2lab,
ylab,
x1lim,
x2lim,
x1floor = 5,
x2floor = 5,
pch = 1,
pcol = "blue",
plwd = 0.5,
pcex = 1,
llwd = 0.3,
lcol = 1,
llty = 1,
acol = "red",
alty = 4,

88 plotPlane

alwd = 0.3,
alength = 0.1,
linesFrom,
lflwd = 3,
envir = environment(formula(model)),
...

)

Arguments

model an lm or glm fitted model object

plotx1 name of one variable to be used on the x1 axis

plotx2 name of one variable to be used on the x2 axis

drawArrows draw red arrows from prediction plane toward observed values TRUE or FALSE

plotPoints Should the plot include scatter of observed scores?

npp number of points at which to calculate prediction

x1lab optional label

x2lab optional label

ylab optional label

x1lim optional lower and upper bounds for x1, as vector like c(0,1)

x2lim optional lower and upper bounds for x2, as vector like c(0,1)

x1floor Default=5. Number of "floor" lines to be drawn for variable x1

x2floor Default=5. Number of "floor" lines to be drawn for variable x2

pch plot character, passed on to the "points" function

pcol color for points, col passed to "points" function

plwd line width, lwd passed to "points" function

pcex character expansion, cex passed to "points" function

llwd line width, lwd passed to the "lines" function

lcol line color, col passed to the "lines" function

llty line type, lty passed to the "lines" function

acol color for arrows, col passed to "arrows" function

alty arrow line type, lty passed to the "arrows" function

alwd arrow line width, lwd passed to the "arrows" function

alength arrow head length, length passed to "arrows" function

linesFrom object with information about "highlight" lines to be added to the 3d plane (out-
put from plotCurves or plotSlopes)

lflwd line widths for linesFrom highlight lines

envir environment from whence to grab data

... additional parameters that will go to persp

plotPlane 89

Details

Besides a fitted model object, plotPlane requires two additional arguments, plotx1 and plotx2. These
are the names of the plotting variables. Please note, that if the term in the regression is something
like poly(fish,2) or log(fish), then the argument to plotx1 should be the quoted name of the variable
"fish". plotPlane will handle the work of re-organizing the information so that R’s predict functions
can generate the desired information. This might be thought of as a 3D version of "termplot", with
a significant exception. The calculation of predicted values depends on predictors besides plotx1
and plotx2 in a different ways. The sample averages are used for numeric variables, but for factors
the modal value is used.

This function creates an empty 3D drawing and then fills in the pieces. It uses the R functions
lines, points, and arrows. To allow customization, several parameters are introduced for the
users to choose colors and such. These options are prefixed by "l" for the lines that draw the plane,
"p" for the points, and "a" for the arrows. Of course, if plotPoints=FALSE or drawArrows=FALSE,
then these options are irrelevant.

Value

The main point is the plot that is drawn, but for record keeping the return object is a list including
1) res: the transformation matrix that was created by persp 2) the call that was issued, 3) x1seq, the
"plot sequence" for the x1 dimension, 4) x2seq, the "plot sequence" for the x2 dimension, 5) zplane,
the values of the plane corresponding to locations x1seq and x2seq.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

See Also

persp, scatterplot3d, regr2.plot

Examples

library(rockchalk)

set.seed(12345)
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
x4 <- rnorm(100)
y <- rnorm(100)
y2 <- 0.03 + 0.1*x1 + 0.1*x2 + 0.25*x1*x2 + 0.4*x3 -0.1*x4 + 1*rnorm(100)
dat <- data.frame(x1,x2,x3,x4,y, y2)
rm(x1, x2, x3, x4, y, y2)

linear ordinary regression
m1 <- lm(y ~ x1 + x2 +x3 + x4, data = dat)

plotPlane(m1, plotx1 = "x3", plotx2 = "x4")

90 plotPlane

plotPlane(m1, plotx1 = "x3", plotx2 = "x4", drawArrows = TRUE)

plotPlane(m1, plotx1 = "x1", plotx2 = "x4", drawArrows = TRUE)

plotPlane(m1, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE, npp = 10)
plotPlane(m1, plotx1 = "x3", plotx2 = "x2", drawArrows = TRUE, npp = 40)

plotPlane(m1, plotx1 = "x3", plotx2 = "x2", drawArrows = FALSE,
npp = 5, ticktype = "detailed")

regression with interaction
m2 <- lm(y ~ x1 * x2 +x3 + x4, data = dat)

plotPlane(m2, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE)

plotPlane(m2, plotx1 = "x1", plotx2 = "x4", drawArrows = TRUE)
plotPlane(m2, plotx1 = "x1", plotx2 = "x3", drawArrows = TRUE)

plotPlane(m2, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE,
phi = 10, theta = 30)

regression with quadratic;
Required some fancy footwork in plotPlane, so be happy
dat$y3 <- 0 + 1 * dat$x1 + 2 * dat$x1^2 + 1 * dat$x2 +

0.4*dat$x3 + 8 * rnorm(100)
m3 <- lm(y3 ~ poly(x1,2) + x2 +x3 + x4, data = dat)
summary(m3)

plotPlane(m3, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE,
x1lab = "my great predictor", x2lab = "a so-so predictor",
ylab = "Most awesomest DV ever")

plotPlane(m3, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE,
x1lab = "my great predictor", x2lab = "a so-so predictor",
ylab = "Most awesomest DV ever", phi = -20)

plotPlane(m3, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE,
phi = 10, theta = 30)

plotPlane(m3, plotx1 = "x1", plotx2 = "x4", drawArrows = TRUE,
ticktype = "detailed")

plotPlane(m3, plotx1 = "x1", plotx2 = "x3", drawArrows = TRUE)

plotPlane(m3, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE,
phi = 10, theta = 30)

m4 <- lm(y ~ sin(x1) + x2*x3 +x3 + x4, data = dat)
summary(m4)

plotSeq 91

plotPlane(m4, plotx1 = "x1", plotx2 = "x2", drawArrows = TRUE)
plotPlane(m4, plotx1 = "x1", plotx2 = "x3", drawArrows = TRUE)

eta3 <- 1.1 + .9*dat$x1 - .6*dat$x2 + .5*dat$x3
dat$y4 <- rbinom(100, size = 1, prob = exp(eta3)/(1+exp(eta3)))
gm1 <- glm(y4 ~ x1 + x2 + x3, data = dat, family = binomial(logit))
summary(gm1)
plotPlane(gm1, plotx1 = "x1", plotx2 = "x2")
plotPlane(gm1, plotx1 = "x1", plotx2 = "x2", phi = -10)

plotPlane(gm1, plotx1 = "x1", plotx2 = "x2", ticktype = "detailed")
plotPlane(gm1, plotx1 = "x1", plotx2 = "x2", ticktype = "detailed",

npp = 30, theta = 30)
plotPlane(gm1, plotx1 = "x1", plotx2 = "x3", ticktype = "detailed",

npp = 70, theta = 60)

plotPlane(gm1, plotx1 = "x1", plotx2 = "x2", ticktype = c("detailed"),
npp = 50, theta = 40)

dat$x2 <- 5 * dat$x2
dat$x4 <- 10 * dat$x4
eta4 <- 0.1 + .15*dat$x1 - 0.1*dat$x2 + .25*dat$x3 + 0.1*dat$x4
dat$y4 <- rbinom(100, size = 1, prob = exp(eta4)/(1+exp(eta4)))
gm2 <- glm(y4 ~ x1 + x2 + x3 + x4, data = dat, family = binomial(logit))
summary(gm2)
plotPlane(gm2, plotx1 = "x1", plotx2 = "x2")
plotPlane(gm2, plotx1 = "x2", plotx2 = "x1")
plotPlane(gm2, plotx1 = "x1", plotx2 = "x2", phi = -10)
plotPlane(gm2, plotx1 = "x1", plotx2 = "x2", phi = 5, theta = 70, npp = 40)

plotPlane(gm2, plotx1 = "x1", plotx2 = "x2", ticktype = "detailed")
plotPlane(gm2, plotx1 = "x1", plotx2 = "x2", ticktype = "detailed",

npp = 30, theta = -30)
plotPlane(gm2, plotx1 = "x1", plotx2 = "x3", ticktype = "detailed",

npp = 70, theta = 60)

plotPlane(gm2, plotx1 = "x4", plotx2 = "x3", ticktype = "detailed",
npp = 50, theta = 10)

plotPlane(gm2, plotx1 = "x1", plotx2 = "x2", ticktype = c("detailed"))

plotSeq Create sequences for plotting

Description

plotSeq is a convenience for the creation of sequence across the range of a variable. By default,

92 plotSeq

the length of the plotting sequence will be equal to the length of the original sequence. In that
case, the only effect is to create an evenly-spaced set of values. If length.out is specified, the user
determines the number of elements in plotSeq.

Usage

plotSeq(x, length.out = length(x))

Arguments

x an R vector variable

length.out the number of elements in the desired plotting sequence.

Details

The primary intended usage is for the creation of plotting sequences of numeric variables. It takes
a variable’s range and the fills in evenly spaced steps. If x is a factor variable, the levels will be
returned. Uses of this functionality are planned in the future.

See Also

pretty

Examples

#Create a quadratic regression

stde <- 14
x <- rnorm(100, m = 50, s = 10)
y <- 0.2 - 02*x + 0.2*x^2 + stde*rnorm(100)
mod1 <- lm (y ~ poly(x, 2))

plot(x, y, main="The Quadratic Regression")
seqx <- plotSeq(x, length.out = 10)
seqy <- predict(mod1, newdata = data.frame(x = seqx))
lines(seqx, seqy, col = "red")

Notice the bad result when a plotting sequence is
not used.
plot(x, y, main = "Bad Plot Result")
seqy <- predict(mod1)
lines(x, seqy, col = "green")

plotSlopes 93

plotSlopes Generic function for plotting regressions and interaction effects

Description

This is a function for plotting regression objects. So far, there is an implementation for lm() objects.
I’ve been revising plotSlopes so that it should handle the work performed by plotCurves. As sure as
that belief is verified, the plotCurves work will be handled by plotSlopes. Different plot types are
created, depending on whether the x-axis predictor plotx is numeric or categorical. ##’

This is a "simple slope" plotter for regression objects created by lm() or similar functions that have
capable predict methods with newdata arguments. The term "simple slopes" was coined by psychol-
ogists (Aiken and West, 1991; Cohen, et al 2002) for analysis of interaction effects for particular
values of a moderating variable. The moderating variable may be continuous or categorical, lines
will be plotted for focal values of that variable.

Usage

plotSlopes(model, plotx, ...)

S3 method for class 'lm'
plotSlopes(
model,
plotx,
modx = NULL,
n = 3,
modxVals = NULL,
plotxRange = NULL,
interval = c("none", "confidence", "prediction"),
plotPoints = TRUE,
legendPct = TRUE,
legendArgs,
llwd = 2,
opacity = 100,
...,
col = c("black", "blue", "darkgreen", "red", "orange", "purple", "green3"),
type = c("response", "link"),
gridArgs,
width = 0.2

)

Arguments

model Required. A fitted Regression

plotx Required. Name of one predictor from the fitted model to be plotted on horizon-
tal axis. May be numeric or factor.

94 plotSlopes

... Additional arguments passed to methods. Often includes arguments that are
passed to plot. Any arguments that customize plot output, such as lwd, cex, and
so forth, may be supplied. These arguments intended for the predict method will
be used: c("type", "se.fit", "interval", "level", "dispersion", "terms", "na.action")

modx Optional. String for moderator variable name. May be either numeric or factor.
If omitted, a single predicted value line will be drawn.

n Optional. Number of focal values of modx, used by algorithms specified by
modxVals; will be ignored if modxVals supplies a vector of focal values.

modxVals Optional. Focal values of modx for which lines are desired. May be a vector of
values or the name of an algorithm, "quantile", "std.dev.", or "table".

plotxRange Optional. If not specified, the observed range of plotx will be used to determine
the axis range.

interval Optional. Intervals provided by the predict.lm may be supplied, either "confi-
dence" (confidence interval for the estimated conditional mean) or "prediction"
(interval for observed values of y given the rest of the model). The level can be
specified as an argument (which goes into ... and then to the predict method)

plotPoints Optional. TRUE or FALSE: Should the plot include the scatterplot points along
with the lines.

legendPct Default = TRUE. Variable labels print with sample percentages.

legendArgs Set as "none" if no legend is desired. Otherwise, this can be a list of named
arguments that will override the settings I have for the legend.

llwd Optional, default = 2. Line widths for predicted values. Can be single value or a
vector, which will be recycled as necessary.

opacity Optional, default = 100. A number between 1 and 255. 1 means "transparent" or
invisible, 255 means very dark. Determines the darkness of confidence interval
regions

col Optional.I offer my preferred color vector as default. Replace if you like. User
may supply a vector of valid color names, or rainbow(10) or gray.colors(5).
Color names will be recycled if there are more focal values of modx than colors
provided.

type Argument passed to the predict function. If model is glm, can be either "re-
sponse" or "link". For lm, no argument of this type is needed, since both types
have same value.

gridArgs Only used if plotx (horizontal axis) is a factor variable. Designates reference
lines between values. Set as "none" if no grid lines are needed. Default will be
gridArgs = list(lwd = 0.3, lty = 5)

width Only used if plotx (horizontal axis) is a factor. Designates thickness of shading
for bars that depict confidence intervals.

Details

The original plotSlopes did not work well with nonlinear predictors (log(x) and poly(x)). The
separate function plotCurves() was created for nonlinear predictive equations and generalized
linear models, but the separation of the two functions was confusing for users. I’ve been working to

plotSlopes 95

make plotSlopes handle everything and plotCurves will disappear at some point. plotSlopes can
create an object which is then tested with testSlopes() and that can be graphed by a plot method.

The argument plotx is the name of the horizontal plotting variable. An innovation was introduced
in Version 1.8.33 so that plotx can be either numeric or categorical.

The argument modx is the moderator variable. It may be either a numeric or a factor variable. As of
version 1.7, the modx argument may be omitted. A single predicted value line will be drawn. That
version also introduced the arguments interval and n.

There are many ways to specify focal values using the arguments modxVals and n. This changed
in rockchalk-1.7.0. If modxVals is omitted, a default algorithm for the variable type will be used
to select n values for plotting. modxVals may be a vector of values (for a numeric moderator) or
levels (for a factor). If modxVals is a vector of values, then the argument n is ignored. However,
if modxVals is one of the name of one of the algorithms, "table", "quantile", or "std.dev.", then the
argument n sets number of focal values to be selected. For numeric modx, n defaults to 3, but for
factors modx will be the number of observed values of modx. If modxVals is omitted, the defaults
will be used ("table" for factors, "quantile" for numeric variables).

For the predictors besides modx and plotx (the ones that are not explicitly included in the plot),
predicted values are calculated with variables set to the mean and mode, for numeric or factor
variables (respectively). Those values can be reviewed in the newdata object that is created as a part
of the output from this function

Value

Creates a plot and an output object that summarizes it.

The return object includes the "newdata" object that was used to create the plot, along with the
"modxVals" vector, the values of the moderator for which lines were drawn, and the color vector. It
also includes the call that generated the plot.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

References

Aiken, L. S. and West, S.G. (1991). Multiple Regression: Testing and Interpreting Interactions.
Newbury Park, Calif: Sage Publications.

Cohen, J., Cohen, P., West, S. G., and Aiken, L. S. (2002). Applied Multiple Regression/Correlation
Analysis for the Behavioral Sciences (Third.). Routledge Academic.

See Also

testSlopes plotCurves

Examples

Manufacture some predictors
set.seed(12345)

dat <- genCorrelatedData2 (N = 100, means = rep(0,4), sds = 1, rho = 0.2,

96 plotSlopes

beta = c(0.3, 0.5, -0.45, 0.5, -0.1, 0, 0.6),
stde = 2)

dat$xcat1 <- gl(2, 50, labels = c("M", "F"))
dat$xcat2 <- cut(rnorm(100), breaks = c(-Inf, 0, 0.4, 0.9, 1, Inf),

labels = c("R", "M", "D", "P", "G"))
incorporate effect of categorical predictors
dat$y <- dat$y + 1.9 * dat$x1 * contrasts(dat$xcat1)[dat$xcat1] +

contrasts(dat$xcat2)[dat$xcat2 ,] %*% c(0.1, -0.16, 0, 0.2)

m1 <- lm(y ~ x1 * x2 + x3 + x4 + xcat1* xcat2, data = dat)
summary(m1)

New in rockchalk 1.7.x. No modx required:
plotSlopes(m1, plotx = "x1")
Confidence interval, anybody?
plotSlopes(m1, plotx = "x1", interval = "conf")

Prediction interval.
plotSlopes(m1, plotx = "x1", interval = "pred")

plotSlopes(m1, plotx = "x1", modx = "xcat2", modxVals = c("R", "M"))

plotSlopes(m1, plotx = "x1", modx = "xcat2", interval = "pred")

plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "conf", space = c(0,1))

plotSlopes(m1, plotx = "xcat1", modx = "xcat2",
modxVals = c("Print R" = "R" , "Show M" = "M"), gridArgs = "none")

Now experiment with a moderator variable
let default quantile algorithm do its job
plotSlopes(m1, plotx = "xcat2", interval = "none")
plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "none")
plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "confidence",

legendArgs = list(title = "xcat2"), ylim = c(-3, 3), lwd = 0.4)
plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "confidence",

legendArgs = list(title = "xcat2"), ylim = c(-3, 3), lwd = 0.4, width = 0.25)
m1.ps <- plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "prediction")
m1.ps <- plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "prediction", space=c(0,2))
plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "prediction", gridArgs = "none")

plotSlopes(m1, plotx = "xcat2", modx = "xcat1", interval = "confidence", ylim = c(-3, 3))
plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "confidence",

col = c("black", "blue", "green", "red", "orange"), lty = c(1, 4, 6, 3))

plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "confidence",
col = gray.colors(4, end = 0.5), lty = c(1, 4, 6, 3), legendArgs = list(horiz=TRUE))

plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "confidence",
col = c("pink", "orange"))

plotSlopes 97

plotSlopes(m1, plotx = "xcat1", interval = "confidence",
col = c("black", "blue", "green", "red", "orange"))

plotSlopes(m1, plotx = "xcat1", modx = "xcat2", interval = "confidence",
col = c("black", "blue", "green", "red", "orange"),
gridlwd = 0.2)

previous uses default equivalent to
plotSlopes(m1, plotx = "x1", modx = "x2", modxVals = "quantile")
Want more focal values?
plotSlopes(m1, plotx = "x1", modx = "x2", n = 5)
Pick focal values yourself?
plotSlopes(m1, plotx = "x1", modx = "x2", modxVals = c(-2, 0, 0.5))
Alternative algorithm?
plotSlopes(m1, plotx = "x1", modx = "x2", modxVals = "std.dev.",

main = "Uses \"std.dev.\" Divider for the Moderator",
xlab = "My Predictor", ylab = "Write Anything You Want for ylab")

Will catch output object from this one
m1ps <- plotSlopes(m1, plotx = "x1", modx = "x2", modxVals = "std.dev.", n = 5,

main = "Setting n = 5 Selects More Focal Values for Plotting")

m1ts <- testSlopes(m1ps)

plot(m1ts)

Examples with categorical Moderator variable

m3 <- lm (y ~ x1 + xcat1, data = dat)
summary(m3)
plotSlopes(m3, modx = "xcat1", plotx = "x1")
plotSlopes(m3, modx = "xcat1", plotx = "x1", interval = "predict")
plotSlopes(m3, modx = "x1", plotx = "xcat1", interval = "confidence",

legendArgs = list(x = "bottomright", title = ""))

m4 <- lm (y ~ x1 * xcat1, data = dat)
summary(m4)
plotSlopes(m4, modx = "xcat1", plotx = "x1")
plotSlopes(m4, modx = "xcat1", plotx = "x1", interval = "conf")

m5 <- lm (y ~ x1 + x2 + x1 * xcat2, data = dat)
summary(m5)
plotSlopes(m5, modx = "xcat2", plotx = "x1")
m5ps <- plotSlopes(m5, modx = "xcat2", plotx = "x1", interval = "conf")

testSlopes(m5ps)

Now examples with real data. How about Chilean voters?
library(carData)
m6 <- lm(statusquo ~ income * sex, data = Chile)

98 plotSlopes

summary(m6)
plotSlopes(m6, modx = "sex", plotx = "income")
m6ps <- plotSlopes(m6, modx = "sex", plotx = "income", col = c("orange", "blue"))

testSlopes(m6ps)

m7 <- lm(statusquo ~ region * income, data= Chile)
summary(m7)
plotSlopes(m7, plotx = "income", modx = "region")

plotSlopes(m7, plotx = "income", modx = "region", plotPoints = FALSE)
plotSlopes(m7, plotx = "income", modx = "region", plotPoints = FALSE,

interval = "conf")
plotSlopes(m7, plotx = "income", modx = "region", modxVals = c("SA","S", "C"),

plotPoints = FALSE, interval = "conf")
Same, choosing 3 most frequent values
plotSlopes(m7, plotx = "income", modx = "region", n = 3, plotPoints = FALSE,

interval = "conf")

m8 <- lm(statusquo ~ region * income + sex + age, data= Chile)
summary(m8)
plotSlopes(m8, modx = "region", plotx = "income")

m9 <- lm(statusquo ~ income * age + education + sex + age, data = Chile)
summary(m9)
plotSlopes(m9, modx = "income", plotx = "age")

m9ps <- plotSlopes(m9, modx = "income", plotx = "age")
m9psts <- testSlopes(m9ps)
plot(m9psts) ## only works if moderator is numeric

Demonstrate re-labeling
plotSlopes(m9, modx = "income", plotx = "age", n = 5,

modxVals = c("Very poor" = 7500, "Rich" = 125000),
main = "Chile Data", legendArgs = list(title = "Designated Incomes"))

plotSlopes(m9, modx = "income", plotx = "age", n = 5, modxVals = c("table"),
main = "Moderator: mean plus/minus 2 SD")

Convert education to numeric, for fun
Chile$educationn <- as.numeric(Chile$education)
m10 <- lm(statusquo ~ income * educationn + sex + age, data = Chile)
summary(m10)
plotSlopes(m10, plotx = "educationn", modx = "income")

Now, the occupational prestige data. Please note careful attention
to consistency of colors selected
data(Prestige)
m11 <- lm(prestige ~ education * type, data = Prestige)

plotSlopes(m11, plotx = "education", modx = "type", interval = "conf")

predictCI 99

dev.new()
plotSlopes(m11, plotx = "education", modx = "type",

modxVals = c("prof"), interval = "conf")
dev.new()
plotSlopes(m11, plotx = "education", modx = "type",

modxVals = c("bc"), interval = "conf")
dev.new()
plotSlopes(m11, plotx = "education", modx = "type",

modxVals = c("bc", "wc"), interval = "conf")

predictCI Calculate a predicted value matrix (fit, lwr, upr) for a regression, ei-
ther lm or glm, on either link or response scale.

Description

This adapts code from predict.glm and predict.lm. I eliminated type = "terms" from consideration.

Usage

predictCI(
object,
newdata = NULL,
type = c("response", "link"),
interval = c("none", "confidence", "prediction"),
dispersion = NULL,
scale = NULL,
na.action = na.pass,
level = 0.95,
...

)

Arguments

object Regression object, class must include glm or lm.

newdata Data frame including focal values for predictors

type One of c("response", "link"), defaults to former.

interval One of c("none", "confidence", "prediction"). "prediction" is defined only for
lm objects, not for glm.

dispersion Will be estimated if not provided. The variance coefficient of the glm, same as
scale squared. Dispersion is allowed as an argument in predict.glm.

scale The square root of dispersion. In an lm, this is the RMSE, called sigma in
summary.lm.

na.action What to do with missing values

level Optional. Default = 0.95. Specify whatever confidence level one desires.

... Other arguments to be passed to predict

100 predictOMatic

Details

R’s predict.glm does not have an interval argument. There are about 50 methods to calculate CIs for
predicted values of GLMs, that’s a major worry. This function takes the simplest route, calculating
the (fit, lwr, upr) in the linear predictor scale, and then if type= "response", those 3 columns are put
through linkinv(). This is the same method that SAS manuals suggest they use, same as Ben Bolker
suggests in r-help (2010). I’d rather use one of the fancy tools like Edgeworth expansion, but that R
code is not available (but is promised).

Use predict.lm with se.fit = TRUE to calculate fit and se.fit. Then calculate lwr and upr as fit +/-
tval * se.fit. If model is lm, the model df.residual will be used to get tval. If glm, this is a normal
approximation, so we thugishly assert tval = 1.98.

There’s some confusing term translation. I wish R lm and glm would be brought into line. For lm,
residual.scale = sigma. For glm, residual.scale = sqrt(dispersion)

Value

c(fit, lwr, upr), and possibly more.

predictOMatic Create predicted values after choosing values of predictors. Can
demonstrate marginal effects of the predictor variables.

Description

It creates "newdata" frames which are passed to predict. The key idea is that each predictor has
certain focal values on which we want to concentrate. We want a more-or-less easy way to spawn
complete newdata objects along with fitted values. The newdata function creates those objects, its
documentation might be helpful in understanding some nuances.

Usage

predictOMatic(
model = NULL,
predVals = "margins",
divider = "quantile",
n = 5,
...

)

Arguments

model Required. A fitted regression model. A predict method must exist for that
model.

predVals Optional. How to choose predictor values? Can be as simple as a keyword
"auto" or "margins". May also be very fine-grained detail, including 1) a vector
of variable names (for which values will be automatically selected) 2) a named
vector of variable names and divider functions, or 3) a list naming variables and
values. See details and examples.

predictOMatic 101

divider An algorithm name from c("quantile", "std.dev", "seq", "table") or a user-provided
function. This sets the method for selecting values of the predictor. Documen-
tation for the rockchalk methods can be found in the functions cutByQuantile,
cutBySD, plotSeq, and cutByTable,.

n Default = 5. The number of values for which predictions are sought.

... Optional arguments to be passed to the predict function. In particular, the argu-
ments se.fit and interval are extracted from ... and used to control the output.

Details

If no predVals argument is supplied (same as predVals = "margins", predictOMatic creates a list
of new data frames, one for each predictor variable. It uses the default divider algorithm (see the
divider argument) and it estimates predicted values for n different values of the predictor. A model
with formula y ~ x1 + x2 + x3 will cause 3 separate output data frames, one for each predictor. They
will be named objects in the list.

The default approach will have marginal tables, while the setting predVals = "auto" will create a
single large newdata frame that holds the Cartesian product of the focal values of each predictor.

predVals may be a vector of variable names, or it may be a list of names and particular values.
Whether a vector or a list is supplied, predVals must name only predictors that are fitted in the
model. predictOMatic will choose the mean or mode for variables that are not explicitly listed, and
selected values of the named variables are "mixed and matched" to make a data set. There are many
formats in which it can be supplied. Suppose a regression formula is y1 ~ sex + income + health +
height. The simplest format for predVals will be a vector of variable names, leaving the selection
of detailed values to the default algorithms. For example, predVals = c("income","height")
will cause sex and health to be set at central values and income and height will have target values
selected according to the divider algorithm (see the argument divider).

The user can spcecify divider algoriths to choose focal values, predvals = c(income = "quantile",
height = "std.dev."). The dividers provided by the rockchalk package are "quantile", "std.dev.",
"seq" and "table". Those are discussed more completely in the help for focalVals. The appropri-
ate algorithms will select focal values of the predictors and they will supply n values for each in a
"mix and match" data frame. After rockchalk 1.7.2, the divider argument can also be the name of a
function, such as R’s pretty.

Finally, users who want very fine grained control over predictOMatic can supply a named list of pre-
dictor values. For example, predVals = list(height = c(5.5, 6.0, 6.5),income = c(10, 20,
30, 40, 50), sex = levels(dat$sex)). One can also use algorithm names, predVals = list(height
= c(5.5, 6.0, 6.5), income = "quantile") and so forth. Examples are offered below.

The variables named in the predVals argument should be the names of the variables in the raw data
frame, not the names that R creates when it interprets a formula. We want "x", not the transformation
in the functions (not log(x), or as.factor(x) or as.numeric(x)). If a formula has a predictor
poly(height, 3), then the predVals argument should refer to height, not poly(height, 3). I’ve
invested quite a bit of effort to make sure this "just works" (many alternative packages that calculate
predicted values do not).

It it important to make sure that diagnostic plots and summaries of predictions are calculated with
the exact same data that was used to fit the model. This is surprisingly difficult because formulas
can include things like log(income + d) and so forth. The function model.data is the magic bullet
for that part of the problem.

102 predictOMatic

Here is one example sequence that fits a model, discerns some focal values, and then uses predic-
tOMatic.

d <- 3 alpha <- 13 m1 <- lm(yout ~ xin + xout + poly(xother,2) + log(xercise + alpha), data
= dat) m1dat <- model.data(m1)

Now, when you are thinking about which values you might like to specify in predVals, use m1dat
to decide. Try

summarize(m1dat)

Then run something like

predictOMatic(m1, predVals = list(xin = median(m1dat$xin), xout = c(1,2,3), xother =
quantile(m1dat$xother))

Get the idea?

Value

A data frame or a list of data frames.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

library(rockchalk)

Replicate some R classics. The budworm.lg data from predict.glm
will work properly after re-formatting the information as a data.frame:

example from Venables and Ripley (2002, pp. 190-2.)
df <- data.frame(ldose = rep(0:5, 2),

sex = factor(rep(c("M", "F"), c(6, 6))),
SF.numdead = c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16))

df$SF.numalive = 20 - df$SF.numdead

budworm.lg <- glm(cbind(SF.numdead, SF.numalive) ~ sex*ldose,
data = df, family = binomial)

predictOMatic(budworm.lg)

predictOMatic(budworm.lg, n = 7)

predictOMatic(budworm.lg, predVals = c("ldose"), n = 7)

predictOMatic(budworm.lg, predVals = c(ldose = "std.dev.", sex = "table"))

Now make up a data frame with several numeric and categorical predictors.

set.seed(12345)
N <- 100

predictOMatic 103

x1 <- rpois(N, l = 6)
x2 <- rnorm(N, m = 50, s = 10)
x3 <- rnorm(N)
xcat1 <- gl(2,50, labels = c("M","F"))
xcat2 <- cut(rnorm(N), breaks = c(-Inf, 0, 0.4, 0.9, 1, Inf),

labels = c("R", "M", "D", "P", "G"))
dat <- data.frame(x1, x2, x3, xcat1, xcat2)
rm(x1, x2, x3, xcat1, xcat2)
dat$xcat1n <- with(dat, contrasts(xcat1)[xcat1, , drop = FALSE])
dat$xcat2n <- with(dat, contrasts(xcat2)[xcat2,])
STDE <- 15
dat$y <- with(dat,

0.03 + 0.8*x1 + 0.1*x2 + 0.7*x3 + xcat1n %*% c(2) +
xcat2n %*% c(0.1,-2,0.3, 0.1) + STDE*rnorm(N))

Impose some random missings
dat$x1[sample(N, 5)] <- NA
dat$x2[sample(N, 5)] <- NA
dat$x3[sample(N, 5)] <- NA
dat$xcat2[sample(N, 5)] <- NA
dat$xcat1[sample(N, 5)] <- NA
dat$y[sample(N, 5)] <- NA
summarize(dat)

m0 <- lm(y ~ x1 + x2 + xcat1, data = dat)
summary(m0)
The model.data() function in rockchalk creates as near as possible
the input data frame.
m0.data <- model.data(m0)
summarize(m0.data)

no predVals: analyzes each variable separately
(m0.p1 <- predictOMatic(m0))

requests confidence intervals from the predict function
(m0.p2 <- predictOMatic(m0, interval = "confidence"))

predVals as vector of variable names: gives "mix and match" predictions
(m0.p3 <- predictOMatic(m0, predVals = c("x1", "x2")))

predVals as vector of variable names: gives "mix and match" predictions
(m0.p3s <- predictOMatic(m0, predVals = c("x1", "x2"), divider = "std.dev."))

"seq" is an evenly spaced sequence across the predictor.
(m0.p3q <- predictOMatic(m0, predVals = c("x1", "x2"), divider = "seq"))

(m0.p3i <- predictOMatic(m0, predVals = c("x1", "x2"),
interval = "confidence", n = 3))

(m0.p3p <- predictOMatic(m0, predVals = c("x1", "x2"), divider = pretty))

predVals as vector with named divider algorithms.
(m0.p3 <- predictOMatic(m0, predVals = c(x1 = "seq", x2 = "quantile")))

104 predictOMatic

predVals as named vector of divider algorithms

same idea, decided to double-check
(m0.p3 <- predictOMatic(m0, predVals = c(x1 = "quantile", x2 = "std.dev.")))
getFocal(m0.data$x2, xvals = "std.dev.", n = 5)

Change from quantile to standard deviation divider
(m0.p5 <- predictOMatic(m0, divider = "std.dev.", n = 5))

Still can specify particular values if desired
(m0.p6 <- predictOMatic(m0, predVals = list("x1" = c(6,7),

"xcat1" = levels(m0.data$xcat1))))

(m0.p7 <- predictOMatic(m0, predVals = c(x1 = "quantile", x2 = "std.dev.")))
getFocal(m0.data$x2, xvals = "std.dev.", n = 5)

(m0.p8 <- predictOMatic(m0, predVals = list(x1 = quantile(m0.data$x1,
na.rm = TRUE, probs = c(0, 0.1, 0.5, 0.8,
1.0)), xcat1 = levels(m0.data$xcat1))))

(m0.p9 <- predictOMatic(m0, predVals = list(x1 = "seq", "xcat1" =
levels(m0.data$xcat1)), n = 8))

(m0.p10 <- predictOMatic(m0, predVals = list(x1 = "quantile",
"xcat1" = levels(m0.data$xcat1)), n = 5))

(m0.p11 <- predictOMatic(m0, predVals = c(x1 = "std.dev."), n = 10))

Previous same as

(m0.p11 <- predictOMatic(m0, predVals = c(x1 = "default"), divider =
"std.dev.", n = 10))

Previous also same as

(m0.p11 <- predictOMatic(m0, predVals = c("x1"), divider = "std.dev.", n = 10))

(m0.p11 <- predictOMatic(m0, predVals = list(x1 = c(0, 5, 8), x2 = "default"),
divider = "seq"))

m1 <- lm(y ~ log(10+x1) + sin(x2) + x3, data = dat)
m1.data <- model.data(m1)
summarize(m1.data)

(newdata(m1))
(newdata(m1, predVals = list(x1 = c(6, 8, 10))))

predictOMatic 105

(newdata(m1, predVals = list(x1 = c(6, 8, 10), x3 = c(-1,0,1))))
(newdata(m1, predVals = list(x1 = c(6, 8, 10),

x2 = quantile(m1.data$x2, na.rm = TRUE), x3 = c(-1,0,1))))

(m1.p1 <- predictOMatic(m1, divider = "std.dev", n = 5))
(m1.p2 <- predictOMatic(m1, divider = "quantile", n = 5))

(m1.p3 <- predictOMatic(m1, predVals = list(x1 = c(6, 8, 10),
x2 = median(m1.data$x2, na.rm = TRUE))))

(m1.p4 <- predictOMatic(m1, predVals = list(x1 = c(6, 8, 10),
x2 = quantile(m1.data$x2, na.rm = TRUE))))

(m1.p5 <- predictOMatic(m1))
(m1.p6 <- predictOMatic(m1, divider = "std.dev."))
(m1.p7 <- predictOMatic(m1, divider = "std.dev.", n = 3))
(m1.p8 <- predictOMatic(m1, divider = "std.dev.", interval = "confidence"))

m2 <- lm(y ~ x1 + x2 + x3 + xcat1 + xcat2, data = dat)
has only columns and rows used in model fit
m2.data <- model.data(m2)
summarize(m2.data)

Check all the margins
(predictOMatic(m2, interval = "conf"))

Lets construct predictions the "old fashioned way" for comparison

m2.new1 <- newdata(m2, predVals = list(xcat1 = levels(m2.data$xcat1),
xcat2 = levels(m2.data$xcat2)), n = 5)

predict(m2, newdata = m2.new1)

(m2.p1 <- predictOMatic(m2,
predVals = list(xcat1 = levels(m2.data$xcat1),

xcat2 = levels(m2.data$xcat2)),
xcat2 = c("M","D")))

See? same!

Pick some particular values for focus
m2.new2 <- newdata(m2, predVals = list(x1 = c(1,2,3), xcat2 = c("M","D")))
Ask for predictions
predict(m2, newdata = m2.new2)

Compare: predictOMatic generates a newdata frame and predictions in one step

(m2.p2 <- predictOMatic(m2, predVals = list(x1 = c(1,2,3),
xcat2 = c("M","D"))))

(m2.p3 <- predictOMatic(m2, predVals = list(x2 = c(0.25, 1.0),
xcat2 = c("M","D"))))

106 predictOMatic

(m2.p4 <- predictOMatic(m2, predVals = list(x2 = plotSeq(m2.data$x2, 10),
xcat2 = c("M","D"))))

(m2.p5 <- predictOMatic(m2, predVals = list(x2 = c(0.25, 1.0),
xcat2 = c("M","D")), interval = "conf"))

(m2.p6 <- predictOMatic(m2, predVals = list(x2 = c(49, 51),
xcat2 = levels(m2.data$xcat2),
x1 = plotSeq(dat$x1))))

plot(y ~ x1, data = m2.data)
by(m2.p6, list(m2.p6$xcat2), function(x) {

lines(x$x1, x$fit, col = x$xcat2, lty = as.numeric(x$xcat2))
})

m2.newdata <- newdata(m2, predVals = list(x2 = c(48, 50, 52),
xcat2 = c("M","D")))

predict(m2, newdata = m2.newdata)

(m2.p7 <- predictOMatic(m2, predVals = list(x2 = c(48, 50, 52),
xcat2 = c("M","D"))))

(m2.p8 <- predictOMatic(m2,
predVals = list(x2 = range(m2.data$x2, na.rm = TRUE),
xcat2 = c("M","D"))))

(m2.p9 <- predictOMatic(m2, predVals = list(x2 = plotSeq(m2.data$x2),
x1 = quantile(m2.data$x1, pr =c(0.33, 0.66), na.rm = TRUE),
xcat2 = c("M","D"))))

plot(y ~ x2 , data = m2.data)

by(m2.p9, list(m2.p9$x1, m2.p9$xcat2), function(x) {lines(x$x2, x$fit)})

(predictOMatic(m2, predVals = list(x2 = c(50, 60), xcat2 = c("M","D")),
interval = "conf"))

create a dichotomous dependent variable
y2 <- ifelse(rnorm(N) > 0.3, 1, 0)
dat <- cbind(dat, y2)

m3 <- glm(y2 ~ x1 + x2 + x3 + xcat1, data = dat, family = binomial(logit))
summary(m3)
m3.data <- model.data(m3)
summarize(m3.data)

(m3.p1 <- predictOMatic(m3, divider = "std.dev."))

(m3.p2 <- predictOMatic(m3, predVals = list(x2 = c(40, 50, 60),
xcat1 = c("M","F")),

divider = "std.dev.", interval = "conf"))

print.pctable 107

Want a full accounting for each value of x2?
(m3.p3 <- predictOMatic(m3,

predVals = list(x2 = unique(m3.data$x2),
xcat1 = c("M","F")), interval = "conf"))

Would like to write a more beautiful print method
for output object, but don't want to obscure structure from user.
for (i in names(m3.p1)){
dns <- cbind(m3.p1[[i]][i], m3.p1[[i]]$fit)
colnames(dns) <- c(i, "predicted")
print(dns)
}

print.pctable Display pctable objects

Description

This is not very fancy. Note that the saved pctable object has the information inside it that is required
to write both column and row percentages. The arguments colpct and rowpct are used to ask for the
two types.

Usage

S3 method for class 'pctable'
print(x, colpct = TRUE, rowpct = FALSE, ...)

Arguments

x A pctable object

colpct Default TRUE: include column percentages?

rowpct Default FALSE: include row percentages?

... Other arguments passed through to print method

Value

A table object for the final printed table.

Author(s)

Paul Johnson <pauljohn@ku.edu>

108 print.summary.pctable

print.summarize print method for output from summarize

Description

Be aware that the unrounded numeric matrix is available as an attribute of the returned object. This
method displays a rounded, character-formatted display of the numeric varibles.

Usage

S3 method for class 'summarize'
print(x, digits, ...)

Arguments

x Object produced by summarize
digits Decimal values to display, defaults as 2.
... optional arguments for print function.

Value

x, unchanged Prints objects created by summarize

print.summary.pctable print method for summary.pctable objects

Description

prints pctab objects. Needed only to deal properly with quotes

Usage

S3 method for class 'summary.pctable'
print(x, ...)

Arguments

x a summary.pctable object
... Other arguments to print method

Value

Nothing is returned

Author(s)

Paul Johnson <pauljohn@ku.edu>

rbindFill 109

rbindFill Stack together data frames

Description

In the end of the code for plyr::rbind.fill, the author explains that is uses an experimental function
to build the data.frame. I would rather not put any weight on an experimental function, so I sat out
to create a new rbindFill. This function uses no experimental functions. It does not rely on any
functions from packages that are not in base of R, except, of course, for functions in this package.

Usage

rbindFill(...)

Arguments

... Data frames

Details

Along the way, I noticed a feature that seems to be a flaw in both rbind and rbind.fill. In the exam-
ples, there is a demonstration of the fact that base R rbind and plyr::rbind.fill both have undesirable
properties when data sets containing factors and ordered variables are involved. This function in-
troduces a "data consistency check" that prevents corruption of variables when data frames are
combined. This "safe" version will notice differences in classes of variables among data.frames and
stop with an error message to alert the user to the problem.

Value

A stacked data frame

Author(s)

Paul Johnson

Examples

set.seed(123123)
N <- 10000
dat <- genCorrelatedData2(N, means = c(10, 20, 5, 5, 6, 7, 9), sds = 3,

stde = 3, rho = .2, beta = c(1, 1, -1, 0.5))
dat1 <- dat
dat1$xcat1 <- factor(sample(c("a", "b", "c", "d"), N, replace=TRUE))
dat1$xcat2 <- factor(sample(c("M", "F"), N, replace=TRUE),

levels = c("M", "F"), labels = c("Male", "Female"))
dat1$y <- dat$y +

as.vector(contrasts(dat1$xcat1)[dat1$xcat1,] %*% c(0.1, 0.2, 0.3))
dat1$xchar1 <- rep(letters[1:26], length.out = N)
dat2 <- dat

110 religioncrime

dat1$x3 <- NULL
dat2$x2 <- NULL
dat2$xcat2 <- factor(sample(c("M", "F"), N, replace=TRUE),

levels = c("M", "F"), labels = c("Male", "Female"))
dat2$xcat3 <- factor(sample(c("K1", "K2", "K3", "K4"), N, replace=TRUE))
dat2$xchar1 <- "1"
dat3 <- dat
dat3$x1 <- NULL
dat3$xcat3 <- factor(sample(c("L1", "L2", "L3", "L4"), N, replace=TRUE))
dat.stack <- rbindFill(dat1, dat2, dat3)
str(dat.stack)

Possible BUG alert about base::rbind and plyr::rbind.fill
Demonstrate the problem of a same-named variable that is factor in one and
an ordered variable in the other
dat5 <- data.frame(ds = "5", x1 = rnorm(N),

xcat1 = gl(20, 5, labels = LETTERS[20:1]))
dat6 <- data.frame(ds = "6", x1 = rnorm(N),

xcat1 = gl(20, 5, labels = LETTERS[1:20], ordered = TRUE))
rbind reduces xcat1 to factor, whether we bind dat5 or dat6 first.
stack1 <- base::rbind(dat5, dat6)
str(stack1)
note xcat1 levels are ordered T, S, R, Q
stack2 <- base::rbind(dat6, dat5)
str(stack2)
xcat1 levels are A, B, C, D
stack3 <- plyr::rbind.fill(dat5, dat6)
str(stack3)
xcat1 is a factor with levels T, S, R, Q ...
stack4 <- plyr::rbind.fill(dat6, dat5)
str(stack4)
oops, xcat1 is ordinal with levels A < B < C < D
stack5 <- rbindFill(dat5, dat6)

religioncrime Religious beliefs and crime rates

Description

The data national-level summary indicators of public opinion about the existence of heaven and hell
as well as the national rate of violent crime.

Usage

data(religioncrime)

Format

data.frame: 51 obs. of 3 variables

removeNULL 111

Author(s)

Paul E. Johnson <pauljohn@ku.edu> and Anonymous

Source

Anonymous researcher who claims the data is real.

Examples

require(rockchalk)
data(religioncrime)
mod1 <- lm(crime ~ heaven, data=religioncrime)
mod2 <- lm(crime ~ hell, data=religioncrime)
mod3 <- lm(crime ~ heaven + hell, data=religioncrime)
with(religioncrime,
mcGraph1(heaven, hell, crime)
)
with(religioncrime,
mcGraph2(heaven, hell, crime)
)
mod1 <- with(religioncrime,
mcGraph3(heaven, hell, crime)
)
summary(mod1[[1]])
##TODO: Draw more with perspective matrix mod1[[2]]

removeNULL Remove NULL values variables from a list

Description

Unlike vectors, lists can hold objects with value NULL. This gets rid of them.

Usage

removeNULL(aList)

Arguments

aList A list

Details

This version is NOT recursive

plyr::rbind.fill uses an experimental function that I choose to avoid. This is the "safe" version.

Value

Same list with NULL’s removed

112 residualCenter

Author(s)

Paul Johnson

Examples

Note it is non-recursive, NULL remains in e
x <- list(a = rnorm(5), b = NULL, c = rnorm(5), d = NULL,

e = list(f = rnorm(2), g = NULL))
x
removeNULL(x)

residualCenter Calculates a "residual-centered" interaction regression.

Description

Given a fitted lm, this function scans for coefficients estimated from "interaction terms" by checking
for colon symbols. The function then calculates the "residual centered" estimate of the interaction
term and replaces the interaction term with that residual centered estimate. It works for any order
of interaction, unlike other implementations of the same approach. The function lmres in the now-
archived package pequod was a similar function.

Calculates predicted values of residual centered interaction regressions estimated in any type of
regression framework (lm, glm, etc).

Usage

residualCenter(model)

Default S3 method:
residualCenter(model)

S3 method for class 'rcreg'
predict(object, ...)

Arguments

model A fitted lm object

object Fitted residual-centered regression from residualCenter

... Other named arguments. May include newdata, a dataframe of predictors. That
should include values for individual predictor, need not include interactions that
are constructed by residualCenter. These parameters that will be passed to the
predict method of the model.

residualCenter 113

Value

a regression model of the type as the input model, with the exception that the residualCentered
predictor is used in place of the original interaction. The return model includes new variable center-
ingRegressions: a list including each of the intermediate regressions that was calculated in order to
create the residual centered interaction terms. These latter objects may be necessary for diagnostics
and to calculate predicted values for hypothetical values of the inputs. If there are no interactive
terms, then NULL is returned.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

References

Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the Merits of Orthogonalizing Powered
and Product Terms: Implications for Modeling Interactions Among Latent Variables. Structural
Equation Modeling, 13(4), 497-519.

Examples

set.seed(123)
x1 <- rnorm(100)
x2 <- rnorm(100)
x3 <- rnorm(100)
x4 <- rnorm(100)
y <- rnorm(100)
dat <- data.frame(y, x1,x2,x3,x4)
rm(x1,x2,x3,x4,y)
m1 <- lm(y~ x1*x2 + x4, data = dat)

m1RC <- residualCenter(m1)

m1RCs <- summary(m1RC)
The stage 1 centering regressions can be viewed as well
lapply(m1RC$rcRegressions, summary)

Verify residualCenter() output against the manual calculation
dat$x1rcx2 <- as.numeric(resid(lm(I(x1*x2) ~ x1 + x2, data = dat)))
m1m <- lm(y ~ x1 + x2 + x4 + x1rcx2, data=dat)
summary(m1m)
cbind("residualCenter" = coef(m1RC), "manual" = coef(m1m))

m2 <- lm(y~ x1*x2*x3 + x4, data=dat)
m2RC <- residualCenter(m2)
m2RCs <- summary(m2RC)

Verify that result manually
dat$x2rcx3 <- as.numeric(resid(lm(I(x2*x3) ~ x2 + x3, data = dat)))
dat$x1rcx3 <- as.numeric(resid(lm(I(x1*x3) ~ x1 + x3, data = dat)))
dat$x1rcx2rcx3 <- as.numeric(resid(lm(I(x1*x2*x3) ~ x1 + x2 + x3 + x1rcx2 +

114 residualCenter

x1rcx3 + x2rcx3 , data=dat)))
(m2m <- lm(y ~ x1 + x2 + x3+ x4 + x1rcx2 + x1rcx3 + x2rcx3 + x1rcx2rcx3,

data = dat))

cbind("residualCenter" = coef(m2RC), "manual" = coef(m2m))

As good as pequod's lmres
not run because pequod generates R warnings
###
if (require(pequod)){
pequodm1 <- lmres(y ~ x1*x2*x3 + x4, data=dat)
pequodm1s <- summary(pequodm1)
coef(pequodm1s)
}

Works with any number of interactions. See:

m3 <- lm(y~ x1*x2*x3*x4, data=dat)
m3RC <- residualCenter(m3)
summary(m3RC)
##'
Verify that one manually (Gosh, this is horrible to write out)
dat$x1rcx4 <- as.numeric(resid(lm(I(x1*x4) ~ x1 + x4, data=dat)))
dat$x2rcx4 <- as.numeric(resid(lm(I(x2*x4) ~ x2 + x4, data=dat)))
dat$x3rcx4 <- as.numeric(resid(lm(I(x3*x4) ~ x3 + x4, data=dat)))
dat$x1rcx2rcx4 <- as.numeric(resid(lm(I(x1*x2*x4) ~ x1 + x2 + x4 +

x1rcx2 + x1rcx4 + x2rcx4, data=dat)))
dat$x1rcx3rcx4 <- as.numeric(resid(lm(I(x1*x3*x4) ~ x1 + x3 + x4 +

x1rcx3 + x1rcx4 + x3rcx4, data=dat)))
dat$x2rcx3rcx4 <- as.numeric(resid(lm(I(x2*x3*x4) ~ x2 + x3 + x4 +

x2rcx3 + x2rcx4 + x3rcx4, data=dat)))
dat$x1rcx2rcx3rcx4 <-

as.numeric(resid(lm(I(x1*x2*x3*x4) ~ x1 + x2 + x3 + x4 +
x1rcx2 + x1rcx3 + x2rcx3 + x1rcx4 + x2rcx4 +
x3rcx4 + x1rcx2rcx3 + x1rcx2rcx4 + x1rcx3rcx4 +
x2rcx3rcx4, data=dat)))

(m3m <- lm(y ~ x1 + x2 + x3 + x4 + x1rcx2 + x1rcx3 + x2rcx3 + x1rcx4 +
x2rcx4 + x3rcx4 + x1rcx2rcx3 + x1rcx2rcx4 + x1rcx3rcx4 +
x2rcx3rcx4 + x1rcx2rcx3rcx4, data=dat))

cbind("residualCenter"=coef(m3RC), "manual"=coef(m3m))

If you want to fit a sequence of models, as in pequod, can do.

tm <-terms(m2)
tmvec <- attr(terms(m2), "term.labels")
f1 <- tmvec[grep(":", tmvec, invert = TRUE)]
f2 <- tmvec[grep(":.*:", tmvec, invert = TRUE)]
f3 <- tmvec[grep(":.*:.*:", tmvec, invert = TRUE)]

> f1
[1] "x1" "x2" "x3" "x4"

se.bars 115

> f2
[1] "x1" "x2" "x3" "x4" "x1:x2" "x1:x3" "x2:x3"
> f3
[1] "x1" "x2" "x3" "x4" "x1:x2" "x1:x3" "x2:x3"
[8] "x1:x2:x3"

f1 <- lm(as.formula(paste("y","~", paste(f1, collapse=" + "))), data=dat)
f1RC <- residualCenter(f1)
summary(f1RC)

f2 <- lm(as.formula(paste("y","~", paste(f2, collapse=" + "))), data=dat)
f2RC <- residualCenter(f2)
summary(f2RC)

f3 <- lm(as.formula(paste("y","~", paste(f3, collapse=" + "))), data=dat)
f3RC <- residualCenter(f3)
summary(f3RC)

library(rockchalk)
dat <- genCorrelatedData(1000, stde=5)

m1 <- lm(y ~ x1 * x2, data=dat)

m1mc <- meanCenter(m1)
summary(m1mc)

m1rc <- residualCenter(m1)
summary(m1rc)

newdf <- apply(dat, 2, summary)
newdf <- as.data.frame(newdf)

predict(m1rc, newdata=newdf)

se.bars Draw standard error bar for discrete variables

Description

Used with plotSlopes if plotx is discrete. This is not currently exported.

Usage

se.bars(x, y, lwr, upr, width = 0.2, col, opacity = 120, lwd = 1, lty = 1)

Arguments

x The x center point

y The fitted "predicted" value

116 skewness

lwr The lower confidence interval bound

upr The upper confidence interval bound

width Thickness of shaded column

col Color for a bar

opacity Value in c(0, 254). 120 is default, that’s partial see through.

lwd line width, usually 1

lty line type, usually 1

Author(s)

Paul Johnson

skewness Calculate skewness

Description

Skewness is a summary of the symmetry of a distribution’s probability density function. In a Normal
distribution, the skewness is 0, indicating symmetry about the expected value.

Usage

skewness(x, na.rm = TRUE, unbiased = TRUE)

Arguments

x A numeric variable (vector)

na.rm default TRUE. Should missing data be removed?

unbiased default TRUE. Should the denominator of the variance estimate be divided by
N-1?

Details

If na.rm = FALSE and there are missing values, the mean and variance are undefined and this
function returns NA.

The skewness may be calculated with the small-sample bias-corrected estimate of the standard de-
viation. It appears somewhat controversial whether this is necessary, hence the argument unbiased
is provided. Set unbiased = FALSE if it is desired to have the one recommended by NIST, for exam-
ple. According to the US NIST, http://www.itl.nist.gov/div898/handbook/eda/section3/
eda35b.htm, skewness is defined as the mean of cubed deviations divided by the cube of the stan-
dard deviation.

mean((x - mean(x))^3) skewness = ___________________ sd(x)^3

where sd(x) is calculated with the denominator N, rather than N-1. This is the Fisher-Pearson
coefficient of skewness, they claim. The unbiased variant uses the standard deviation divisor (N-1)
to bias-correct the standard deviation.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm

standardize 117

Value

A scalar value or NA

Author(s)

Paul Johnson <pauljohn@ku.edu>

standardize Estimate standardized regression coefficients for all variables

Description

This is brain-dead standardization of all variables in the design matrix. It mimics the silly output of
SPSS, which standardizes all regressors, even if they represent categorical variables.

Usage

standardize(model)

S3 method for class 'lm'
standardize(model)

Arguments

model a fitted lm object

Value

an lm fitted with the standardized variables

a standardized regression object

Author(s)

Paul Johnson <pauljohn@ku.edu>

See Also

meanCenter which will center or re-scale only numberic variables

Examples

library(rockchalk)
N <- 100
dat <- genCorrelatedData(N = N, means = c(100,200), sds = c(20,30), rho = 0.4, stde = 10)
dat$x3 <- rnorm(100, m = 40, s = 4)

m1 <- lm(y ~ x1 + x2 + x3, data = dat)
summary(m1)

118 summarize

m1s <- standardize(m1)
summary(m1s)

m2 <- lm(y ~ x1 * x2 + x3, data = dat)
summary(m2)

m2s <- standardize(m2)
summary(m2s)

m2c <- meanCenter(m2)
summary(m2c)

summarize Sorts numeric from discrete variables and returns separate summaries
for those types of variables.

Description

The work is done by the functions summarizeNumerics and summarizeFactors. Please see the
help pages for those functions for complete details.

Usage

summarize(
dat,
alphaSort = FALSE,
stats = c("mean", "sd", "skewness", "kurtosis", "entropy", "normedEntropy", "nobs",

"nmiss"),
probs = c(0, 0.5, 1),
digits = 3,
...

)

Arguments

dat A data frame

alphaSort If TRUE, the columns are re-organized in alphabetical order. If FALSE, they are
presented in the original order.

stats A vector of desired summary statistics. Set stats = NULL to omit all stat sum-
maries. Legal elements are c("min", "med", "max", "mean", "sd", "var","skewness",
"kurtosis", "entropy", "normedEntropy", "nobs","nmiss"). The statis-
tics c("entropy", "normedEntropy") are available only for factor variables,
while mean, variance, and so forth will be calculated only for numeric variables.
"nobs" is the number of observations with non-missing, finite scores (not NA,

summarize 119

NaN, -Inf, or Inf). "nmiss" is the number of cases with values of NA. The de-
fault setting for probs will cause c("min", "med", "max") to be included, they
need not be requested explicitly. To disable them, revise probs.

probs For numeric variables, is used with the quantile function. The default is
probs = c(0, .50, 1.0), which are labeled in output as c("min", "med", and
"max"). Set probs = NULL to prevent these in the output.

digits Decimal values to display, defaults as 2.

... Optional arguments that are passed to summarizeNumerics and summarizeFactors.
For numeric variables, one can specify na.rm and unbiased. For discrete vari-
ables, the key argument is maxLevels, which determines the number of levels
that will be reported in tables for discrete variables.

Details

The major purpose here is to generate summary data structure that is more useful in subsequent data
analysis. The numeric portion of the summaries are a data frame that can be used in plots or other
diagnostics.

The term "factors" was used, but "discrete variables" would have been more accurate. The factor
summaries will collect all logical, factor, ordered, and character variables.

Other variable types, such as Dates, will be ignored, with a warning.

Value

Return is a list with two objects 1) output from summarizeNumerics: a data frame with variable
names on rows and summary stats on columns, 2) output from summarizeFactors: a list with sum-
mary information about each discrete variable. The display on-screen is governed by a method
print.summarize.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

Examples

library(rockchalk)

set.seed(23452345)
N <- 100
x1 <- gl(12, 2, labels = LETTERS[1:12])
x2 <- gl(8, 3, labels = LETTERS[12:24])
x1 <- sample(x = x1, size=N, replace = TRUE)
x2 <- sample(x = x2, size=N, replace = TRUE)
z1 <- rnorm(N)
a1 <- rnorm(N, mean = 1.2, sd = 11.7)
a2 <- rpois(N, lambda = 10 + abs(a1))
a3 <- rgamma(N, 0.5, 4)
b1 <- rnorm(N, mean = 211.3, sd = 0.4)
dat <- data.frame(z1, a1, x2, a2, x1, a3, b1)

120 summarize

summary(dat)

summarize(dat)

summarize(dat, digits = 4)

summarize(dat, stats = c("min", "max", "mean", "sd"),
probs = c(0.25, 0.75))

summarize(dat, probs = c(0, 0.20, 0.80),
stats = c("nobs", "mean", "med", "entropy"))

summarize(dat, probs = c(0, 0.20, 0.50),
stats = c("nobs", "nmiss", "mean", "entropy"), maxLevels=10)

dat.sum <- summarize(dat, probs = c(0, 0.20, 0.50),
stats = c("nobs", "nmiss", "mean", "entropy"), maxLevels=10)

dat.sum
Inspect unformatted structure of objects within return
dat.sum[["numerics"]]
dat.sum[["factors"]]

Only quantile values, no summary stats for numeric variables
Discrete variables get entropy
summarize(dat,

probs = c(0, 0.25, 0.50, 0.75, 1.0),
stats = "entropy", digits = 2)

Quantiles and the mean for numeric variables.
No diversity stats for discrete variables (entropy omitted)
summarize(dat,

probs = c(0, 0.25, 0.50, 0.75, 1.0),
stats = "mean")

summarize(dat,
probs = NULL,
stats = "mean")

Note: output is not beautified by a print method
dat.sn <- summarizeNumerics(dat)
dat.sn
formatSummarizedNumerics(dat.sn)
formatSummarizedNumerics(dat.sn, digits = 5)

dat.summ <- summarize(dat)

dat.sf <- summarizeFactors(dat, maxLevels = 20)
dat.sf
formatSummarizedFactors(dat.sf)

See actual values of factor summaries, without
beautified printing

summarizeFactors 121

summarizeFactors(dat, maxLevels = 5)
formatSummarizedFactors(summarizeFactors(dat, maxLevels = 5))

summarize(dat, alphaSort = TRUE)

summarize(dat, digits = 6, alphaSort = FALSE)

summarize(dat, maxLevels = 2)

datsumm <- summarize(dat, stats = c("mean", "sd", "var", "entropy", "nobs"))

Unbeautified numeric data frame, variables on the rows
datsumm[["numerics"]]
Beautified versions 1. shows saved version:
attr(datsumm, "numeric.formatted")
2. Run formatSummarizedNumerics to re-specify digits:
formatSummarizedNumerics(datsumm[["numerics"]], digits = 10)

datsumm[["factors"]]
formatSummarizedFactors(datsumm[["factors"]])
formatSummarizedFactors(datsumm[["factors"]], digits = 6, maxLevels = 10)

summarizeFactors Extracts non-numeric variables, calculates summary information, in-
cluding entropy as a diversity indicator.

Description

This function finds the non- numeric variables and ignores the others. (See summarizeNumerics
for a function that handles numeric variables.) It then treats all non-numeric variables as if they
were factors, and summarizes each. The main benefits from this compared to R’s default summary
are 1) more summary information is returned for each variable (entropy estimates ofdispersion), 2)
the columns in the output are alphabetized. To prevent alphabetization, use alphaSort = FALSE.

Usage

summarizeFactors(
dat = NULL,
maxLevels = 5,
alphaSort = TRUE,
stats = c("entropy", "normedEntropy", "nobs", "nmiss"),
digits = 2

)

Arguments

dat A data frame

maxLevels The maximum number of levels that will be reported.

122 summarizeFactors

alphaSort If TRUE (default), the columns are re-organized in alphabetical order. If FALSE,
they are presented in the original order.

stats Default is c("nobs", "nmiss", "entropy","normedEntropy").

digits Default 2.

Details

Entropy is one possible measure of diversity. If all outcomes are equally likely, the entropy is
maximized, while if all outcomes fall into one possible category, entropy is at its lowest values. The
lowest possible value for entropy is 0, while the maximum value is dependent on the number of
categories. Entropy is also called Shannon’s information index in some fields of study (Balch, 2000
; Shannon, 1949).

Concerning the use of entropy as a diversity index, the user might consult Balch(). For each possible
outcome category, let p represent the observed proportion of cases. The diversity contribution of
each category is -p * log2(p). Note that if p is either 0 or 1, the diversity contribution is 0. The sum
of those diversity contributions across possible outcomes is the entropy estimate. The entropy value
is a lower bound of 0, but there is no upper bound that is independent of the number of possible
categories. If m is the number of categories, the maximum possible value of entropy is -log2(1/m).

Because the maximum value of entropy depends on the number of possible categories, some schol-
ars wish to re-scale so as to bring the values into a common numeric scale. The normed entropy
is calculated as the observed entropy divided by the maximum possible entropy. Normed entropy
takes on values between 0 and 1, so in a sense, its values are more easily comparable. However,
the comparison is something of an illusion, since variables with the same number of categories will
always be comparable by their entropy, whether it is normed or not.

Warning: Variables of class POSIXt will be ignored. This will be fixed in the future. The function
works perfectly well with numeric, factor, or character variables. Other more elaborate structures
are likely to be trouble.

Value

A list of factor summaries

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

References

Balch, T. (2000). Hierarchic Social Entropy: An Information Theoretic Measure of Robot Group
Diversity. Auton. Robots, 8(3), 209-238.

Shannon, Claude. E. (1949). The Mathematical Theory of Communication. Urbana: University of
Illinois Press.

See Also

summarizeNumerics

summarizeNumerics 123

Examples

set.seed(21234)
x <- runif(1000)
xn <- ifelse(x < 0.2, 0, ifelse(x < 0.6, 1, 2))
xf <- factor(xn, levels=c(0,1,2), labels("A","B","C"))
dat <- data.frame(xf, xn, x)
summarizeFactors(dat)
##see help for summarize for more examples

summarizeNumerics Extracts numeric variables and presents an summary in a workable
format.

Description

Finds the numeric variables, and ignores the others. (See summarizeFactors for a function that
handles non-numeric variables). It will provide quantiles (specified probs as well as other sum-
mary statistics, specified stats. Results are returned in a data frame. The main benefits from
this compared to R’s default summary are 1) more summary information is returned for each vari-
able (dispersion), 2) the results are returned in a form that is easy to use in further analysis, 3) the
variables in the output may be alphabetized.

Usage

summarizeNumerics(
dat,
alphaSort = FALSE,
probs = c(0, 0.5, 1),
stats = c("mean", "sd", "skewness", "kurtosis", "nobs", "nmiss"),
na.rm = TRUE,
unbiased = TRUE,
digits = 2

)

Arguments

dat a data frame or a matrix

alphaSort If TRUE, the columns are re-organized in alphabetical order. If FALSE, they are
presented in the original order.

probs Controls calculation of quantiles (see the R quantile function’s probs argu-
ment). If FALSE or NULL, no quantile estimates are provided. Default is
c("min" = 0, "med" = 0.5, "max" = 1.0), which will appear in output as c("min",
"med", "max"). Other values between 0 and 1 are allowed. For example,
c(0.3, 0.7) will appear in output as pctile_30% and pctile_70%.

124 summary.factor

stats A vector including any of these: c("min","med", "max", "mean", "sd", "var",
"skewness", "kurtosis","nobs", "nmiss"). Default includes all except var.
"nobs" means number of observations with non-missing, finite scores (not NA,
NaN, -Inf, or Inf). "nmiss" is the number of cases with values of NA. If FALSE
or NULL, provide none of these.

na.rm default TRUE. Should missing data be removed to calculate summaries?

unbiased If TRUE (default), skewness and kurtosis are calculated with biased corrected
(N-1) divisor in the standard deviation.

digits Number of digits reported after decimal point. Default is 2

Value

a data.frame with one column per summary element (rows are the variables).

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

See Also

summarize and summarizeFactors

summary.factor Tabulates observed values and calculates entropy

Description

This adapts code from R base summary.factor. It adds the calculation of entropy as a measure of
diversity.

Usage

S3 method for class 'factor'
summary(y)

Arguments

y a factor (non-numeric variable)

Value

A list, including the summary table and vector of summary stats if requested.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

summary.pctable 125

summary.pctable Extract presentation from a pctable object

Description

Creates a column and/or row percent display of a pctable result

Usage

S3 method for class 'pctable'
summary(object, ..., colpct = TRUE, rowpct = FALSE)

Arguments

object A pctable object

... Other arguments, currently unused

colpct Default TRUE: should column percents be included

rowpct Default FALSE: should row percents be included

Value

An object of class summary.pctable

Author(s)

Paul Johnson <pauljohn@ku.edu>

testSlopes Hypothesis tests for Simple Slopes Objects

Description

Conducts t-test of the hypothesis that the "simple slope" line for one predictor is statistically sig-
nificantly different from zero for each value of a moderator variable. The user must first run
plotSlopes(), and then give the output object to plotSlopes(). A plot method has been im-
plemented for testSlopes objects. It will create an interesting display, but only when the moderator
is a numeric variable.

Usage

testSlopes(object)

Arguments

object Output from the plotSlopes function

126 testSlopes

Details

This function scans the input object to detect the focal values of the moderator variable (the variable
declared as modx in plotSlopes). Consider a regression with interactions

y <- b0 + b1*x1 + b2*x2 + b3*(x1*x2) + b4*x3 + ... + error

If plotSlopes has been run with the argument plotx="x1" and the argument modx="x2", then there
will be several plotted lines, one for each of the chosen values of x2. The slope of each of these
lines depends on x1’s effect, b1, as well as the interactive part, b3*x2.

This function performs a test of the null hypothesis of the slope of each fitted line in a plotSlopes
object is statistically significant from zero. A simple t-test for each line is offered. No correction
for the conduct of multiple hypothesis tests (no Bonferroni correction).

When modx is a numeric variable, it is possible to conduct further analysis. We ask "for which
values of modx would the effect of plotx be statistically significant?" This is called a Johnson-
Neyman (Johnson-Neyman, 1936) approach in Preacher, Curran, and Bauer (2006). The interval is
calculated here. A plot method is provided to illustrate the result.

Value

A list including 1) the hypothesis test table, 2) a copy of the plotSlopes object, and, for numeric
modx variables, 3) the Johnson-Neyman (J-N) interval boundaries.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

References

Preacher, Kristopher J, Curran, Patrick J.,and Bauer, Daniel J. (2006). Computational Tools for
Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analy-
sis. Journal of Educational and Behavioral Statistics. 31,4, 437-448.

Johnson, P.O. and Neyman, J. (1936). "Tests of certain linear hypotheses and their applications to
some educational problems. Statistical Research Memoirs, 1, 57-93.

See Also

plotSlopes

Examples

library(rockchalk)
library(carData)
m1 <- lm(statusquo ~ income * age + education + sex + age, data = Chile)
m1ps <- plotSlopes(m1, modx = "income", plotx = "age")
m1psts <- testSlopes(m1ps)
plot(m1psts)

dat2 <- genCorrelatedData(N = 400, rho = .1, means = c(50, -20),
stde = 300, beta = c(2, 0, 0.1, -0.4))

vech2Corr 127

m2 <- lm(y ~ x1*x2, data = dat2)
m2ps <- plotSlopes(m2, plotx = "x1", modx = "x2")
m2psts <- testSlopes(m2ps)
plot(m2psts)
m2ps <- plotSlopes(m2, plotx = "x1", modx = "x2", modxVals = "std.dev", n = 5)
m2psts <- testSlopes(m2ps)
plot(m2psts)

Try again with longer variable names

colnames(dat2) <- c("oxygen","hydrogen","species")
m2a <- lm(species ~ oxygen*hydrogen, data = dat2)
m2aps1 <- plotSlopes(m2a, plotx = "oxygen", modx = "hydrogen")
m2aps1ts <- testSlopes(m2aps1)
plot(m2aps1ts)
m2aps2 <- plotSlopes(m2a, plotx = "oxygen", modx = "hydrogen",

modxVals = "std.dev", n = 5)
m2bps2ts <- testSlopes(m2aps2)
plot(m2bps2ts)

dat3 <- genCorrelatedData(N = 400, rho = .1, stde = 300,
beta = c(2, 0, 0.3, 0.15),
means = c(50,0), sds = c(10, 40))

m3 <- lm(y ~ x1*x2, data = dat3)
m3ps <- plotSlopes(m3, plotx = "x1", modx = "x2")
m3sts <- testSlopes(m3ps)
plot(testSlopes(m3ps))
plot(testSlopes(m3ps), shade = FALSE)

Finally, if model has no relevant interactions, testSlopes does nothing.
m9 <- lm(statusquo ~ age + income * education + sex + age, data = Chile)
m9ps <- plotSlopes(m9, modx = "education", plotx = "age", plotPoints = FALSE)
m9psts <- testSlopes(m9ps)

vech2Corr Convert the vech (column of strictly lower trianglar values from a ma-
trix) into a correlation matrix.

Description

vech2Corr is a convenience function for creating correlation matrices from a vector of the lower
triangular values. It checks the arguments to make sure they are consistent with the requirements
of a correlation matrix. All values must be in [-1, 1], and the number of values specified must be
correct for a lower triangle.

Usage

vech2Corr(vech)

128 vech2mat

Arguments

vech A vector of values for the strictly lower triangle of a matrix. All values must be
in the [0,1] interval (because they are correlations) and the matrix formed must
be positive definite.

Details

Use this in combination with the lazyCov function to convert a vector of standard deviations and
the correlation matrix into a covariance matrix.

Value

A symmetric correlation matrix, with 1’s on the diagonal.

Author(s)

Paul E. Johnson <pauljohn@ku.edu>

See Also

Similar functions exist in many packages, see vec2sm in corpcor, xpnd in MCMCpack

Examples

v <- c(0.1, 0.4, -0.5)
vech2Corr(v)
v <- c(0.1, 0.4, -0.4, 0.4, 0.5, 0.1)
vech2Corr(v)

vech2mat Convert a half-vector (vech) into a matrix.

Description

Fills a matrix from a vector that represents the lower triangle. If user does not supply a value for
diag, then the vech will fill in the diagonal as well as the strictly lower triangle. If diag is provided
(either a number or a vector), then vech is for the strictly lower triangular part. The default value
for lowerOnly is FALSE, which means that a symmetric matrix will be created. See examples for
a demonstration of how to fill in the lower triangle and leave the diagonal and the upper triangle
empty.

Usage

vech2mat(vech, diag = NULL, lowerOnly = FALSE)

waldt 129

Arguments

vech A vector

diag Optional. A single value or a vector for the diagonal. A vech is a strictly lower
triangluar vech, it does not include diagonal values. diag can be either a single
value (to replace all elements along the diagonal) or a vector of the correct length
to replace the diagonal.

lowerOnly Default = FALSE.

See Also

Similar functions exist in many packages, see vec2sm in corpcor, xpnd in MCMCpack

Examples

x <- 1:6
vech2mat(x)
vech2mat(x, diag = 7)
vech2mat(x, diag = c(99, 98, 97, 96))
vech2mat(x, diag = 0, lowerOnly = TRUE)

waldt T-test for the difference in 2 regression parameters

Description

This is the one the students call the "fancy t test". It is just the simplest, most easy to use version
of the t test to decide if 2 coefficients are equal. It is not as general as other functions in other
packages. This is simpler to use for beginners. The car package’s function linearHypothesis
is more general, but its documentation is much more difficult to understand. It gives statistically
identical results, albeit phrased as an F test.

Usage

waldt(parm1, parm2, model, model.cov = NULL, digits = getOption("digits"))

Arguments

parm1 A parameter name, in quotes!

parm2 Another parameter name, in quotes!

model A fitted regression model

model.cov Optional, another covariance matrix to use while calculating the test. Primarily
used for robust (or otherwise adjusted) standard errors

digits How many digits to print? This affects only the on-screen printout. The return
object is numeric, full precision.

130 waldt

Details

I did this because we have trouble understanding terminology in documentation for more abstract
functions in other R packages.

It has an additional feature, it can import robust standard errors to conduct the test.

Value

A vector with the difference, std. err., t-stat, and p value. Prints a formatted output statement.

Author(s)

Paul Johnson <pauljohn@ku.edu>

Examples

mdat <- data.frame(x1 = rnorm(100), x2 = rnorm(100))
stde <- 2
mdat$y <- 0.2 * mdat$x1 + 0.24 * mdat$x2 + stde * rnorm(100)
m1 <- lm(y ~ x1 + x2, data = mdat)
waldt("x1", "x2", m1)
waldt("x1", "x2", m1, digits = 2)
Returned object is not "rounded characters". It is still numbers
stillnumeric <- waldt("x1", "x2", m1, digits = 2)
stillnumeric
Equivalent to car package linearHypothesis:
if(require(car)){

linearHypothesis(m1, "x1 = x2")
}
recall t = sqrt(F) for a 1 degree of freedom test.
If we could understand instructions for car, we probably
would not need this function, actually.

Index

∗ datasets
cheating, 8
religioncrime, 110

∗ hplot
mcGraph1, 45
rockchalk-package, 3

∗ regression
mcGraph1, 45
outreg, 65
rockchalk-package, 3

addLines, 4

centerNumerics, 6
centralValues, 7
cheating, 8
checkIntFormat, 9
checkPosDef, 10
combineLevels, 10
cutByQuantile, 11
cutBySD, 12
cutByTable, 13
cutFancy, 13

descriptiveTable, 15
dir.create.unique, 17
drawnorm, 18

focalVals, 19
formatSummarizedFactors, 20
formatSummarizedNumerics, 20, 21

genCorrelatedData, 22
genCorrelatedData2, 23, 27
genCorrelatedData3, 26
genX, 30
getAuxRsq, 32
getDeltaRsquare, 33
getFocal, 34
getPartialCor, 35
getVIF, 36

gmc, 37

kurtosis, 38

lazyCor, 40
lazyCov, 40
lmAuxiliary, 41

magRange, 42
makeSymmetric, 43
makeVec, 44
mcDiagnose, 3, 44
mcGraph1, 45
mcGraph2 (mcGraph1), 45
mcGraph3 (mcGraph1), 45
meanCenter, 3, 4, 48, 117
model.data, 52
model.data.default, 53
mvrnorm, 56, 56

newdata, 58

outreg, 3, 65
outreg2HTML, 71

padW0, 72
pctable, 73
persp, 89
perspEmpty, 76
plot.testSlopes, 77
plotCurves, 78, 95
plotFancy, 83
plotFancyCategories, 85
plotPlane, 3, 86
plotSeq, 91
plotSlopes, 3, 93
predict.rcreg (residualCenter), 112
predictCI, 99
predictOMatic, 100
print.pctable, 107
print.summarize, 108

131

132 INDEX

print.summary.pctable, 108

quantile, 14

rbindFill, 109
regr2.plot, 89
religioncrime, 110
removeNULL, 111
residualCenter, 4, 50, 112
rmvnorm, 57
rockchalk (rockchalk-package), 3
rockchalk-package, 3

scatterplot3d, 89
se.bars, 115
skewness, 116
standardize, 3, 50, 117
summarize, 20, 118
summarizeFactors, 20, 121
summarizeNumerics, 122, 123
summary.factor, 124
summary.pctable, 125

tabular, 75
testSlopes, 95, 125

vech2Corr, 127
vech2mat, 128

waldt, 129

	rockchalk-package
	addLines
	centerNumerics
	centralValues
	cheating
	checkIntFormat
	checkPosDef
	combineLevels
	cutByQuantile
	cutBySD
	cutByTable
	cutFancy
	descriptiveTable
	dir.create.unique
	drawnorm
	focalVals
	formatSummarizedFactors
	formatSummarizedNumerics
	genCorrelatedData
	genCorrelatedData2
	genCorrelatedData3
	genX
	getAuxRsq
	getDeltaRsquare
	getFocal
	getPartialCor
	getVIF
	gmc
	kurtosis
	lazyCor
	lazyCov
	lmAuxiliary
	magRange
	makeSymmetric
	makeVec
	mcDiagnose
	mcGraph1
	meanCenter
	model.data
	model.data.default
	mvrnorm
	newdata
	outreg
	outreg2HTML
	padW0
	pctable
	perspEmpty
	plot.testSlopes
	plotCurves
	plotFancy
	plotFancyCategories
	plotPlane
	plotSeq
	plotSlopes
	predictCI
	predictOMatic
	print.pctable
	print.summarize
	print.summary.pctable
	rbindFill
	religioncrime
	removeNULL
	residualCenter
	se.bars
	skewness
	standardize
	summarize
	summarizeFactors
	summarizeNumerics
	summary.factor
	summary.pctable
	testSlopes
	vech2Corr
	vech2mat
	waldt
	Index

